## Supporting Information

## Manipulating the Membrane Penetration Mechanism of Helical Polypeptides via Aromatic Modification for Efficient Gene Delivery

Nan Zheng<sup>a,b,§</sup>, Ziyuan Song<sup>a,§</sup>, Jiandong Yang<sup>c,§</sup>, Yang Liu<sup>a</sup>, Fangfang Li<sup>c</sup>, Jianjun Cheng<sup>a,\*</sup>, Lichen Yin<sup>c,\*</sup>

<sup>a</sup>Department of Materials Science and Engineering, University of Illinois at Urbana– Champaign, 1304 W Green Street, Urbana, Illinois 61801, USA

<sup>b</sup> State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China

<sup>c</sup> Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China

\* Corresponding author: E-mail: jianjunc@illinois.edu; Phone: +1 217-244-3924; Fax: 217-333-2736 (J. Cheng)

<sup>§</sup> These authors contributed equally.



**Scheme S1.** Synthetic routes of aromatic glutamate (A), aromatic glutamate based NCA monomers (B), and the L-Leu-NCA monomer (C).

| Name | $- [\theta]_{222} \times 10^{-3} (\text{cm}^2 \text{ deg dmol}^{-1})^{a)}$ | Helical content (%) <sup>b)</sup> |
|------|----------------------------------------------------------------------------|-----------------------------------|
| PO   | 30.0                                                                       | 84.7                              |
| P1   | 27.6                                                                       | 78.3                              |
| P2   | 24.6                                                                       | 70.8                              |
| P3   | 27.2                                                                       | 77.4                              |
| P4   | 22.6                                                                       | 65.6                              |
| P5   | 31.4                                                                       | 88.3                              |
| P6   | 32.9                                                                       | 92.0                              |
| P7   | 27.5                                                                       | 78.3                              |
| P8   | 19.9                                                                       | 58.7                              |

Table S1. Secondary conformational analysis of polypeptides

<sup>a)</sup> The mean residue ellipticity  $[\theta]$  was determined by following formula: Ellipticity ( $[\theta]$  in cm<sup>2</sup> deg dmol<sup>-1</sup>) = (millidegrees × mean residue weight) / (path length in mm × concentration of polypeptide in mg ml<sup>-1</sup>). <sup>b)</sup> The helical contents of the polypeptides were calculated by the following equation: helical content = ( $-[\theta_{222}] + 3000$ ) / 39000.



**Fig. S1.** CLSM images of HeLa cells following incubation with RhB-**P0** and RhB-**P3** at 37 °C or 4 °C for 2 h. Cell nuclei were stained with DAPI. Bar represents 20  $\mu$ m.



**Fig. S2.** Cell penetration levels of RhB-labeled polypeptides in HeLa cells in the presence of various endocytosis inhibitors including m $\beta$ CD (A), chlorpromazine (B), and wortmannin (C) (n = 3).



**Fig. S3.** DNA condensation by polypeptides at various polypeptide/DNA weight ratios as evaluated by the gel retardation assay. N represents naked DNA.



Fig. S4. DNA condensation by polypeptides at different polypeptide/DNA weight ratios as determined by the EB exclusion assay (n = 3).



Fig. S5. Particle size and zeta potential of polypeptide/DNA complexes at different polypeptide/DNA weight ratios.



Fig. S6. Transfection efficiencies of P0 and P3 at various polypeptide/DNA weight ratios in B16F10 cells in the absence (A) or presence (B) of 10% serum (n = 3).



**Fig. S7.** Cytotoxicity of polypeptide/DNA polyplexes following 24-h incubation in HeLa cells as determined by the MTT assay (n = 3).



**Fig. S8.** Cytotoxicity of **P0**, **P3**, and PEI (25 kDa) at various concentrations in HeLa cells following 24-h incubation as determined by the MTT assay (n = 3).

<sup>1</sup>H NMR spectra of new compounds.



Fig. S9. <sup>1</sup>H NMR spectrum of Naph-L-Glu in DMSO-*d*<sub>6</sub>:DCl-D<sub>2</sub>O (9:1, v/v).



Fig. S10. <sup>1</sup>H NMR spectrum of Anth-L-Glu in DMSO-*d*<sub>6</sub>:DCl-D<sub>2</sub>O (9:1, v/v).



Fig. S11. <sup>1</sup>H NMR spectrum of B-L-Glu-NCA in CDCl<sub>3</sub>.



Fig. S12. <sup>1</sup>H NMR spectrum of Naph-<sub>L</sub>-Glu-NCA in CDCl<sub>3</sub>.



Fig. S13. <sup>1</sup>H NMR spectrum of Anth-L-Glu-NCA in CDCl<sub>3</sub>.



Fig. S14. <sup>1</sup>H NMR spectrum of L-Leu-NCA in CDCl<sub>3</sub>.



**Fig. S15.** Representative <sup>1</sup>H NMR spectrum of copolymer precursor for composition calculation (PALG-*r*-PABLG as an example, **P5** precursor) in CDCl<sub>3</sub>:TFA-*d* (85:15, v/v). The block composition was calculated by the integration ratio of the  $\alpha$ -protons in PALG residues (proton *a*) to the  $\alpha$ -protons in PABLG residues (proton *a*').



Fig. S16. <sup>1</sup>H NMR spectrum of P0 in TFA-*d*.



Fig. S17. <sup>1</sup>H NMR spectrum of P1 in TFA-*d*.



Fig. S18. <sup>1</sup>H NMR spectrum of P2 in TFA-d.



Fig. S19. <sup>1</sup>H NMR spectrum of P3 in TFA-*d*.



Fig. S20. <sup>1</sup>H NMR spectrum of P4 in TFA-d.



Fig. S21. <sup>1</sup>H NMR spectrum of P5 in TFA-*d*.



Fig. S22. <sup>1</sup>H NMR spectrum of P6 in TFA-*d*.



Fig. S23. <sup>1</sup>H NMR spectrum of P7 in TFA-d.



Fig. S24. <sup>1</sup>H NMR spectrum of P8 in TFA-d.