Supporting Information

Manipulating the Membrane Penetration Mechanism of Helical Polypeptides via Aromatic Modification for Efficient Gene Delivery

Nan Zheng ${ }^{\text {a,b,§ }}$, Ziyuan Song ${ }^{\text {a, }, \S}$, Jiandong Yang ${ }^{\mathrm{c}, \S}$, Yang Liu ${ }^{\mathrm{a}}$, Fangfang Li ${ }^{\mathrm{c}}$, Jianjun Cheng ${ }^{\text {a, },}$, Lichen Yin ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Department of Materials Science and Engineering, University of Illinois at UrbanaChampaign, 1304 W Green Street, Urbana, Illinois 61801, USA

${ }^{\mathrm{b}}$ State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
${ }^{\text {c }}$ Institute of Functional Nano \& Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials \& Devices, Collaborative Innovation Center of Suzhou

Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China

* Corresponding author: E-mail: lcyin@suda.edu.cn; Phone: +86 0512-65882039 (L.Yin)
* Corresponding author: E-mail: jianjunc@illinois.edu; Phone: +1 217-244-3924; Fax: 217-3332736 (J. Cheng)
${ }^{\text {§ }}$ These authors contributed equally.

C)

Scheme S1. Synthetic routes of aromatic glutamate (A), aromatic glutamate based NCA monomers (B), and the ${ }_{\text {L-Leu-NCA monomer (C). }}$

Table S1. Secondary conformational analysis of polypeptides

Name	$\left.-[\theta]_{222 \times 10^{-3}\left(\mathrm{~cm}^{2} \mathrm{deg} \mathrm{dmol}\right.}{ }^{-1}\right)^{\mathrm{a})}$	Helical content $(\%)^{\mathrm{b})}$
P0	30.0	84.7
P1	27.6	78.3
P2	24.6	70.8
P3	27.2	77.4
P4	22.6	65.6
P5	31.4	88.3
P6	32.9	92.0
P7	27.5	78.3
P8	19.9	58.7

${ }^{\text {a) }}$ The mean residue ellipticity [θ] was determined by following formula: Ellipticity ($[\theta] \mathrm{in}_{\mathrm{cm}}{ }^{2}$ deg dmol^{-1}) $=($ millidegrees \times mean residue weight $) /($ path length in $\mathrm{mm} \times$ concentration of polypeptide in $\mathrm{mg} \mathrm{ml}^{-1}$). ${ }^{\text {b) }}$ The helical contents of the polypeptides were calculated by the following equation: helical content $=\left(-\left[\theta_{222}\right]+3000\right) / 39000$.

Fig. S1. CLSM images of HeLa cells following incubation with RhB-P0 and RhB-P3 at $37{ }^{\circ} \mathrm{C}$ or $4^{\circ} \mathrm{C}$ for 2 h . Cell nuclei were stained with DAPI. Bar represents $20 \mu \mathrm{~m}$.

Fig. S2. Cell penetration levels of RhB-labeled polypeptides in HeLa cells in the presence of various endocytosis inhibitors including $m \beta C D(A)$, chlorpromazine (B), and wortmannin (C) (n $=3$).

Fig. S3. DNA condensation by polypeptides at various polypeptide/DNA weight ratios as evaluated by the gel retardation assay. N represents naked DNA.

Fig. S4. DNA condensation by polypeptides at different polypeptide/DNA weight ratios as determined by the EB exclusion assay $(\mathrm{n}=3)$.
 polypeptide/DNA weight ratios.

Fig. S6. Transfection efficiencies of $\mathbf{P 0}$ and $\mathbf{P 3}$ at various polypeptide/DNA weight ratios in B16F10 cells in the absence (A) or presence (B) of 10% serum ($n=3$).

Fig. S7. Cytotoxicity of polypeptide/DNA polyplexes following 24-h incubation in HeLa cells as determined by the MTT assay ($\mathrm{n}=3$).

Fig. S8. Cytotoxicity of P0, P3, and PEI (25 kDa) at various concentrations in HeLa cells following 24-h incubation as determined by the MTT assay ($\mathrm{n}=3$).
${ }^{1} \mathrm{H}$ NMR spectra of new compounds.

Fig. S9. ${ }^{1} \mathrm{H}$ NMR spectrum of Naph-L-Glu in DMSO- d_{6} :DCl-D ${ }_{2} \mathrm{O}(9: 1, \mathrm{v} / \mathrm{v})$.

Fig. S10. ${ }^{1} \mathrm{H}$ NMR spectrum of Anth-L-Glu in DMSO- $d_{6}: \mathrm{DCl}^{-\mathrm{D}_{2} \mathrm{O}}(9: 1, \mathrm{v} / \mathrm{v})$.

Fig. S11. ${ }^{1} \mathrm{H}$ NMR spectrum of B-L-Glu-NCA in CDCl_{3}.

Fig. S12. ${ }^{1} \mathrm{H}$ NMR spectrum of Naph-L-Glu-NCA in CDCl_{3}.

Fig. S13. ${ }^{1} \mathrm{H}$ NMR spectrum of Anth-L-Glu-NCA in CDCl_{3}.

Fig. S14. ${ }^{1} \mathrm{H}$ NMR spectrum of L -Leu-NCA in CDCl_{3}.

Fig. S15. Representative ${ }^{1} \mathrm{H}$ NMR spectrum of copolymer precursor for composition calculation (PALG- r-PABLG as an example, P5 precursor) in $\mathrm{CDCl}_{3}:$ TFA- d ($85: 15$, v/v). The block composition was calculated by the integration ratio of the α-protons in PALG residues (proton a) to the α-protons in PABLG residues (proton a^{\prime}).

Fig. S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 0}$ in TFA- d.

Fig. S17. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 1$ in TFA- d.

Fig. S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} \mathbf{2}$ in TFA- d.

Fig. S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 3$ in TFA- d.

Fig. S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 4$ in TFA- d.

Fig. S21. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 5}$ in TFA- d.

Fig. S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 6}$ in TFA- d.

Fig. S23. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 7$ in TFA- d.

$$
\begin{array}{lllllllll}
9.0 & 8.0 & 7.0 & 6.0 & 5.0 & 4.0 & 3.0 & 2.0 & 1.0 \\
& & & \delta(\mathrm{ppm}) & & &
\end{array}
$$

Fig. S24. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 8}$ in TFA- d.

