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    3.1   Introduction: Development of Nanomedicine 

 There is growing interest in integrating nanotechnology with medicine, creating the 
so-called nanomedicine for disease diagnosis and treatment with unprecedented 
precision and effi cacy  [  1  ] . Nanomedicines are drug- or imaging agent-containing 
carriers or devices with size ranging from a few to several hundred nanometers  [  2  ] . 
Although the term nanomedicine emerged only recently  [  1,   3  ] , nanotechnology has 
been employed in drug delivery for decades  [  4  ] . In principle, nanomedicines are 
designed to enable the delivery of small molecules or macromolecular therapeutics 
to achieve improved disease treatment by circumventing various physiological 
barriers. The physiological barriers may prohibit the effi cient permeation of nano-
medicines with undesired sizes and surface properties. Therefore, there have been 
signifi cant efforts on controlled formulation of nanomedicines. The majority of 
current nanotechnology platforms for chemotherapy have involved repackaging of 
traditional anticancer agents into various forms of nanometer-sized delivery vehicles, 
such as monomeric polymer–drug conjugates with sizes typically 10 nm or less  [  2  ] , 
polymeric nanoparticles  [  5  ]  or self-assembled amphiphilic block-copolymer 
micelles  [  6  ]  in a size range of 20–100 nm, or lipid  [  7  ]  and polymeric vesicles  [  8  ]  
(also known as liposomes and polymersomes, respectively) with sizes between 
sub-100 nm to submicrometers. 

 Liposomes are by far the most successful nanomedicine platform, accounting for 
30–40% of nanomedicines that have been approved by the U.S. Food and Drug 
Administration (FDA) for their usage in the clinic  [  9  ] . The report of the fi rst lipo-
somal drug delivery system dates back to the 1960s  [  5  ] . Long-circulating lipo-
somes using so-called stealth technique appeared in the literature in the 1980s  [  10  ] . 
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Since then, in particular after the improvement of circulation profi les of liposome 
through the use of polyethylene glycol (PEG)  [  11  ] , numerous liposomal nanomedi-
cines have been developed and tested in the clinic, with a handful of them being 
approved by the FDA. For instance, Doxil®, a PEGylated liposomal doxorubicin, 
was approved by the FDA in 1995 for treating AIDS-associated Kaposi sarcoma, 
among other liposomes including Abelcet®, DaunoXome®, DepotDur®, and 
Ambisome® for treating cancer or other diseases  [  12  ] . Polymeric nanomedicine, a 
subfi eld of nanomedicine that involves the use of polymeric nanostructures as drug 
carriers, was fi rst reported in the 1970s  [  13  ] . Since then, polymer-based nanomedi-
cines have undergone many preclinical and clinical investigations. Abraxane®, a 
130-nm paclitaxel/albumin polymeric nanoparticle, is one such example that has 
been approved by FDA as a second line treatment of breast cancer  [  14  ] . Currently, 
there are over three dozen nanomedicines approved for clinical use, and more are 
expected in the coming years  [  9,   15  ] . More than 50 companies are developing nano-
medicine-based therapeutics or diagnostics for cancer therapy, 34 of which were 
established since 2006  [  16  ] . 

 The development of the abovementioned therapeutic nanomedicines has been 
mainly focused on targeting the primary tumors through the so-called enhanced 
permeation and retention (EPR) effect, a passive targeting mechanism that refers to 
the accumulation of nanomedicines in tumor tissue facilitated by the highly perme-
able nature of the tumor vasculature and poor lymphatic drainage of the interstitial 
fl uid in the tumor  [  17  ] . The newer generation nanomedicines, however, place greater 
emphasis on novel strategies to bypass biological barriers at the systemic, tissue, 
and cellular levels and to locate and target metastatic lesions. New chemistries and 
fabrication technologies allow precise control of nanomedicine formulation, making 
it possible to evaluate nanomedicine with the variation of one parameter at a time 
(e.g., size, surface property, and shape), which provides insight into the fundamental 
understanding of the interplay of these parameters and the in vivo performance of 
the nanomedicines. Conjugation chemistry plays a vital role in controlling the incor-
poration of therapeutics or targeting ligands to nanomedicine. For instance, “click 
chemistry,” a powerful conjugation approach conceived by Barry Sharpless, has 
become a highly recognized method in the fi eld of nanomedicine.  

    3.2   In Vitro and In Vivo Studies of Nanomedicines 

 To achieve the accumulation of nanomedicines in tumor tissue, they must fi rst over-
come various systemic barriers, especially the clearance from the circulation system 
via phagocytic uptake and hepatic fi ltration. Nanomedicines are then expected to 
extravasate the tumor vasculature, penetrate the tumor microenvironment, and get 
internalized into the targeted cancer cells to allow cancer cells—even those situated 
distal to the tumor vessels—to be exposed to the anticancer agent with suffi ciently 
high concentrations. The nanomedicines’ size, shape, and surface property all 
have a signifi cant impact on the effi ciency of bypassing these physiological barriers. 
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Although the optimal size of nanomedicines for prolonged circulation half-life is 
still unclear, there is general consensus that their size should be controlled below 
200 nm  [  3  ]  because particles with size over 200 nm tend to induce undesired 
responses by the reticuloendothelial system (RES) and are quickly cleared from the 
circulation. Particles 150 nm or smaller may escape through the fenestration of the 
vascular endothelium and get cleared from the blood circulation. Particles with size 
less than 20 and 10 nm may be cleared through the lymph nodes and renal systems, 
respectively  [  3,   18  ] . Penetration of intravascularly administered nanomedicines into 
the tumor mass has been proven diffi cult because of the high interstitial fl uid pres-
sure and complex extracellular matrix of the tumor tissue  [  19  ] . Chilkoti and coworkers 
evaluated and demonstrated the molecular weight (size) dependency on the tumor 
penetration using dextran-based delivery vehicles  [  20  ] . They found that dextrans 
with low molecular weights (3.3–10 kDa) can effi ciently penetrate and homoge-
neously distribute in the tumor tissue, but dextrans with higher molecular weights 
(40–70 kDa) were observed only ~15  m m away from the vessel wall, indicating their 
low penetration/permeation effi ciency in the tumor tissue. Using a three-dimen-
sional, multicellular spheroid of human cervical carcinoma cells that simulate a 
solid tumor, Pun et al. observed similar size dependency of nanoparticles on tumor 
penetration. Polystyrene nanoparticles with 20 or 40 nm sizes readily penetrated the 
simulated tumor and distributed homogeneously, whereas 100 and 200 nm particles 
showed restricted penetration. Interestingly, when nanomedicines were coated with 
extracellular matrix-disrupting collagenase, tumor penetration of the 20 and 40 nm 
particles was enhanced by roughly tenfold  [  21  ] . 

 Geng et al. recently reported that the shape of delivery vehicles also has a signifi -
cant effect on biodistribution  [  22  ] . They evaluated cylinder-shaped fi lomicelles 
(20–60 nm in cross-sectional diameter and a few micrometers in length) in rodents 
and found that the fi lomicelles could persist in the circulation up to 1 week after 
intravenous injection. The circulation half-life is about ten times longer than the 
half-life of their spherical counterparts, which is presumably caused by the fact that 
these cylinder-shaped delivery vehicles are more readily extended by fl ow forces 
and therefore are less likely to interact with and get taken up by the phagocytic cells. 
This interesting fi nding may shed light on the design of a new generation of drug 
delivery vehicles for enhanced circulation time and improved in vivo performance. 
A separate study using polymeric nanostructures with various shapes (e.g., cylinder 
and cube) also demonstrated the high impact of shape on the biological response of 
nanomedicine  [  23  ] . Cylindrical nanostructures with an aspect ratio (height/width) 
of 3, for example, can be internalized into cells four times faster than those with an 
aspect ratio of 2. It has yet to be determined whether these uniquely designed nano-
structures could outperform the traditional, spherical nanoparticles in terms of 
biodistribution and antitumor effi cacy. 

 Besides size and shape, surface characteristics and physical properties of nano-
medicines can signifi cantly infl uence the nanoparticle biodistribution. Positively 
charged particles are typically cleared much more quickly from the circulation than 
neutral or negatively charged particles  [  24  ] . The use of PEG to modify the surface 
of nanoparticles is critical to improve their circulation half-life and reduce the 



34 R. Tong et al.

plasma protein absorption to nanoparticles that could otherwise lead to opsonization, 
a process that involves surface deposition of blood opsonic factors (such as fi bronec-
tin) for enhanced recognition by macrophages  [  24  ] . There has been some progress 
made developing PEG-like, protein-resistant materials, exemplifi ed by zwitterionic 
polymers  [  25  ] , which exhibit high resistance to nonspecifi c protein absorption due 
in part to their neutral surface charge and hydrophilicity  [  26  ] . However, it is unclear 
at this time whether these materials could be viable, biocompatible alternatives to 
PEG. A recent study by Verma et al. showed that the surface pattern of nanomedi-
cines can have a dramatic effect on their biological responses  [  27  ] . Gold nanopar-
ticles coated with subnanometer striations of alternating anionic (sulfonate) and 
hydrophobic (methyl) groups can successfully penetrate plasma membrane without 
disrupting the membrane bilayer. This approach can be particularly useful for direct 
delivery of cargos to the cytoplasm. The surface-modifi ed nanoparticles also showed 
improved resistance to protein absorption, providing another potential strategy for 
surface modifi cation of nanomedicines.  

    3.3   Preparation of Nanomedicine with Controlled Properties 

 To develop nanomedicines with consistent in vitro and in vivo performance that can 
be utilized in targeted or personalized disease treatment, it is crucial to formulate 
these nanomedicines in a highly controlled manner. Conventional formulation strat-
egies usually give rise to nanomedicines with heterogeneous sizes and predomi-
nantly spherical shapes. Particle Replication In Nonwetting Template (PRINT), a 
top-down nanofabrication technique developed by DeSimone and coworkers, 
addresses these limitations and allows the formulation of polymeric nanoparticles 
with precisely controlled sizes in various shapes other than spherical (e.g., cylindri-
cal, cubic, discoid) using soft lithographic molding technology  [  28,   29  ] . The 
DeSimone group utilizes photocurable perfl uoropolyether (PFPE) molds to emboss 
liquid precursor compounds, using highly fl uorinated surfaces that are nonwetting 
to organic materials, which enables the fabrication of isolated objects with excellent 
control over shape and composition  [  29  ] . Another promising device-assisted nano-
medicine formulation strategy was developed by Tseng  [  30,   31  ] , and Karnik and 
Farokhzad  [  32–  34  ] , utilizing microfl uidics to control rapid mixing of polymer and 
drug and to control droplet size to yield particles with uniform size. 

 Polymeric nanoparticles are usually prepared by coprecipitation of hydrophobic 
therapeutics with hydrophobic polymers, such as polylactide (PLA) or polylactide-
 co -glycolide (PLGA). The resulting nanoparticles typically have poorly controlled 
physicochemical properties such as low drug loading, undesired drug release kinet-
ics, heterogeneous nanoparticle composition, and broad particle size distributions 
 [  5  ] . To address these challenges, a new drug-loading and formulation method was 
reported by Cheng and coworkers, using drug-initiated lactide polymerization fol-
lowed by nanoprecipitation  [  35,   36  ] . In the presence of a metal catalyst (e.g., (BDI)
Zn(II)N(TMS) 

2
  with BDI = 2-((2,6-diisopropylphenyl)amido)-4-((2,6-bisalkyl)
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imino)-2-pentene), hydroxyl-containing drugs (e.g., paclitaxel, doxorubicin, or 
camptothecin) can quantitatively form metal-alkoxide complexes, which can subse-
quently initiate living, ring-opening polymerizations of lactide rings to form drug–
PLA conjugates. Nanoprecipitation of the resulting drug–PLA conjugates gives rise 
to drug–PLA nanoparticles with controllable sizes between 50 and 150 nm and low 
polydispersity. These nanoparticles have high drug loading (as high as 40 wt%), 
high loading effi ciency (97–100%), and controlled drug release kinetics without 
burst release effect. The bulky BDI chelating ligand on the metal catalyst also regu-
lates the coordination of the metal catalyst only with the least sterically hindered 
hydroxyl group of the drug, providing additional control over the polymerization as 
well as the structure and composition of the polymer–drug conjugates. In a separate 
study to improve the formulation of nanomedicines via controlled chemistry, Shen 
and coworkers demonstrated a new concept by using drug molecules (e.g., camp-
tothecin) to control the self-assembly of nanomedicines with minimal amount of 
carrier materials and therefore substantially enhanced drug loading  [  37  ] . Specifi cally, 
camptothecin was conjugated to an oligomer ethylene glycol (OEG), and the result-
ing camptothecin–OEG conjugate self-assembled into liposome-like nanocapsules 
via the hydrophobic interaction between camptothecin molecules. 

 Controlled conjugation chemistry is another tool playing a potentially vital 
role in controlling the incorporation of therapeutics or targeting ligands into nano-
medicines. “Click chemistry,” a powerful conjugation technique conceived by 
Barry Sharpless, has become a highly recognized method in the fi eld of nano-
medicine, allowing conjugation of therapeutics or targeting ligands to nanomedi-
cines with unprecedented site-specifi city  [  38–  40  ] . The click process involves 
1,3-dipolar cycloaddition of an azide to an alkyne to form 1,2,3-triazole rings, a 
reaction known for its high effi ciency and high specifi city. Click chemistry pro-
ceeds well in aqueous solution  [  41  ]  or even in live organisms  [  42,   43  ] , and is 
independent of other functional groups  [  38  ] , demonstrating excellent solvent and 
functionality tolerability. Click chemistry has been widely used lately in the syn-
thesis of polymeric therapeutics, surface modifi cation of nanomedicine, and bio-
conjugation for in vitro and in vivo applications  [  44,   45  ] . In one study, Wooley 
and coworkers developed a new methodology for the preparation of well-defi ned 
core-shell nanoparticles using click chemistry. An amphiphilic diblock copoly-
mer (poly(acrylic acid)- b -poly(styrene)), partially functionalized throughout the 
corona with alkynyl groups, self-assembled in water into micelles and formed 
nanoparticles after click reaction between the alkynyl shell of the micelles and 
azide-terminated dendrimers as the cross-linking agent. The remaining azide ter-
mini of the dendrimer cross-linker were further utilized for a secondary click 
reaction to conjugate either fl uorescence dye or therapeutics onto the nanoparti-
cles’ surface  [  46  ] . Murphy et al. have recently demonstrated conjugation between 
azide-functionalized gold nanorods and an acetylene-functionalized enzyme 
(trypsin) through click chemistry. The click-conjugated enzyme showed substan-
tially improved specifi city and activity compared to the same enzyme linked to 
the gold nanorods by conventional bioconjugation chemistries  [  47  ] . Another 
innovative utilization of click chemistry was demonstrated by Bertozzi et al. in 
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noninvasive in vivo imaging in developing zebrafi sh  [  48  ] . They fi rst treated 
zebrafi sh embryos with azide-containing, unnatural sugars to metabolically label 
their cell-surface glycans with azides. Subsequently, the embryos were treated 
with a difl uorinated, cyclooctyne-containing fl uorophore by means of copper-free 
click chemistry, enabling the visualization of glycans in vivo at subcellular reso-
lution during the development of the zebrafi sh embryos.  

    3.4   Nanomedicine-Mediated Cancer Targeting 

 There have been enormous efforts of designing nanomedicines aiming for targeted 
delivery of therapeutics for improved treatment of cancer, cardiovascular diseases, 
and immunological diseases  [  49–  51  ] . One of the key challenges is the design and 
formulation of clinically relevant, targeted nanomedicines  [  51  ] . Many nanomedi-
cine platforms have been developed and used in targeted drug delivery applications, 
including dendrimers, liposomes, polymeric nanoparticles, micelles, protein nano-
particles, ceramic nanoparticles, viral nanoparticles, metallic nanoparticles, and 
carbon nanotubes  [  50  ] . To facilitate the clinical application of targeted nanomedi-
cines, their formulation should involve the use of biocompatible materials and 
should be completed via simple, robust processes for the assembly of nanomedi-
cine, incorporation of drug and targeting ligand, and purifi cation, postformulation 
processing, large-scale preparation, sterilization, and storage. The formulation pro-
cess should also allow facile optimization of physicochemical parameters of the 
targeted nanomedicines that can be critical to their PK/PD properties, cellular uptake 
behavior, and in vivo effi cacy. 

 The FDA-approved nanomedicines for cancer therapy function mainly through 
the accumulation of nanomedicine in tumor tissues via the EPR effect in the 
leaky tumor vasculature  [  52  ]  and the subsequent release of the payload to kill the 
cancer cells. This passive targeting process usually requires long-circulating deliv-
ery systems in order to achieve time-dependent accumulation in tumor tissue to 
substantially improve the biodistribution and pharmacokinetic profi le of the thera-
peutic modality, compared to the conventional administration of unmodifi ed drugs 
 [  53  ] . The effi ciency of this passive targeting mechanism is largely determined by 
the physicochemical properties of the delivery system. Many liposomal or poly-
meric drug/protein nanomedicines were designed and developed mainly to address 
issues related to the pharmacological drawbacks of small molecule or protein thera-
peutics  [  2,   12,   54  ] . Without active targeting ligands, certain drug delivery systems 
with optimized biophysical and chemical properties can still exhibit tissue-specifi c 
accumulation  [  23,   27  ] . However, to further improve disease targeting, it is inevita-
ble to integrate various active targeting strategies in nanomedicines through the 
incorporation of targeting ligands. 

 Targeted ligands can be either incorporated to formulated nanomedicines via 
surface conjugation or incorporated to prefunctionalized biomaterials prior to the 
nanomedicine formulation. The latter approach can simplify optimization and 
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potential scale-up of the targeted nanomedicine but can be very diffi cult to 
 implement, especially in case of macromolecular targeting ligands (e.g., antibodies 
or aptamers)  [  35,   36,   55–  58  ] . The majority of targeting ligand incorporation 
approaches still follow the former strategy. The conjugation of targeting ligands is 
one of the most critical steps in targeted nanomedicine formulation, which may 
result in decreased targeting effi ciency due to poorly controlled ligand conjugation. 
Reasons are nonspecifi c binding prior to reaching the targeted disease tissue or 
anchoring on the targeted tissue surface too strongly, thus preventing homogeneous 
diffusion of the nanomedicine throughout the targeted tissue  [  59  ] . Therefore, opti-
mization of the ligand density on the nanomedicine surface is a critical step to keep 
the subtle balance between anchoring affi nity and tissue penetration, a key require-
ment for optimal therapeutic effi cacy  [  60  ] . 

 The proliferation of tumor cells requires suffi cient nutrient supplies from blood. 
By stopping tumors from making new blood vessels, a process known as antiangio-
genesis  [  61  ] , not only the growth of solid tumors but also the tendency of tumor 
metastasis may be prohibited  [  62  ] . Over the last several decades, a handful of angio-
genic targets have been explored in anticancer nanomedicine, which include the 
vascular endothelial growth factor receptors (VEGFRs),  a  

v
  b  

3
  integrins, matrix met-

alloproteinase receptors (MMPs), and vascular cell adhesion molecule-1 (VCAM-1). 
Cell proliferation markers are another set of targets for cancer therapeutics, as many 
of these markers are signifi cantly overexpressed on certain tumor cells. Actively 
targeting nanoparticles have followed the schemes of monoclonal antibodies to 
target cell proliferation receptors such as human epidermal receptors (HER)  [  63  ] , 
transferrin receptors  [  64–  66  ] , and folate receptors  [  67  ] . 

  Antibodies  (Abs) are the most well-known targeting ligands used in targeted drug 
delivery. Over a dozen of monoclonal Abs have been approved by the FDA since 
1997  [  68  ] , including Herceptin® (anti-HER2/neu) for breast cancer and Avastin (anti-
VEGF-A) for metastatic colorectal cancer treatment. Hundreds of delivery systems 
based on Abs or their fragments are in preclinical and clinical investigations  [  69,   70  ] . 
As Abs are derived either from animals  [  71  ]  or through phage display techniques 
 [  72  ] , immunogenicity has always been a concern. The conjugation of Abs to nano-
medicine is usually accomplished via coupling chemistry (e.g., carboxylate-to-amine 
or maleimide-to-thiol couplings). The drawback of this approach is the lack of con-
jugation site-specifi city, which leads to substantially reduced targeting specifi city 
and effi ciency  [  73,   74  ] . Single-chain variable fragment (scFV) with high affi nity to 
the targeted tumor tissue may restrict the localization and tumor penetration  [  75  ] . 
Another potential issue with the use of antibody-nanomedicine is the nonspecifi c 
binding to circulating free antigen or irrelevant receptors, which leads to reduced 
targeting effi ciency  [  70  ] . Several strategies can be applied to address these concerns; 
one such strategy is to use affi body, the fragments of Abs, as the substituent of the 
high molecular weight Abs. Affi bodies have comparable binding affi nities and tar-
geting effi ciencies as Abs but have substantially reduced sizes (molecular weights of 
affi bodies ~ 6kDa versus those of Abs ~150kDa)  [  76  ] ; the latter is particularly impor-
tant when they are used as the targeting ligands in nanomedicine. Engineered meth-
ods to increase the circulation time of antibodies have also been reported  [  77,   78  ] . 
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Recent development in protein engineering may also facilitate the applications of 
Abs as targeting agents in nanomedicines  [  79,   80  ] . 

  Aptamers  (Apts) are single-stranded DNA or RNA that can fold into unique con-
formations. They can bind to specifi c targets, either small molecules or macromol-
ecules, with very high affi nity. Recently aptamers have been used as a new class of 
targeting ligands in nanomedicine-mediated cancer targeting and demonstrated 
great promise  [  81–  84  ] . Aptamers are usually nonimmunogenic as they are devel-
oped via a combinational chemistry approach called systematic evolution of ligands 
by exponential enrichment (SELEX). As the synthesis of aptamers is achieved via 
an entirely chemical process, batch-to-batch variability can be substantially reduced. 
It is also possible to chemically modify aptamers by attaching fl uorophores or func-
tional groups for orthogonal bioconjugation; the latter approach holds signifi cant 
advantage over Abs with respect to site-specifi c, controlled conjugation to nano-
medicines. Aptamers exhibit remarkable stability over a wide range of pH, tempera-
ture, and organic solvents without loss of activity, and they can be modifi ed to have 
improved stability against enzyme degradation, which is critical for their in vivo 
application. An additional advantage of using aptamers instead of antibodies as tar-
geting ligand in nanomedicine is the potential of controlling the dosage of nano-
medicines through the use of complementary DNA as the antidote  [  85,   86  ] . This 
option is particularly important in the case of an accidental overdose of a therapeu-
tic nanomedicine that may otherwise cause signifi cant, acute toxicity. The general-
ized manufacturing of antidotes to aptamers has recently been described  [  87  ] . One 
issue for using aptamers as targeting ligands for nanomedicines is that the number 
of available targets is still limited compared to the targets for antibodies. Identifi cation 
of aptamers via an in vivo selection process has recently been reported, which may 
address this issue and open a new avenue to a large variety of potentially clinically 
relevant, tumor-specifi c aptamers  [  88  ] . 

  Oligopeptides  as targeting ligands can be selected through phage display. 
Oligopeptides are usually easy to synthesize and handle as compared to Abs or 
aptamers. Targeting mediated by oligopeptides, however, can be nonspecifi c. For 
instance, RGD (arginine–glycine–aspartic acid), one of the most well-known ligands 
with strong affi nity to the cell adhesion integrin  a  

v
  b  

3
  that is overexpressed in cancer 

cells, can target cancer and increase intracellular drug delivery in various preclinical 
tumor models  [  89,   90  ] , but it also binds to other integrins such as  a  

5
  b  

1
  and  a  

4
  b  

1
 . The 

nonspecifi c targeting and binding of RGD to other receptors might limit its potential 
in cancer-specifi c targeting  [  91,   92  ] .  Carbohydrates  in extracellular matrices (ECM) 
overexpressed in tumors, such as chondroitin sulfate  [  93  ]  and hyaluronan (HA) 
receptor  [  94  ] , allow them to serve as effective targets for cancer targeting. For exam-
ple, HA coating of liposomes improved their circulation half-life and enhanced their 
targeting effi ciency to HA receptor overexpressing tumors  [  94  ] .  Small organic 
molecule -based cancer targeting ligands are much easier to prepare in large scale 
and to incorporate into nanomedicine as Abs, aptamers, or oligopeptides  [  95,   96  ] . 
A few examples such as folate and near-inferred fl uorescent dye IR783 show interest-
ing cancer targeting properties and may be promising ligands in nanomedicine-
mediated cancer targeting  [  97,   98  ] . 
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 Tremendous effort has been undertaken to explore whether the incorporation of 
targeting ligands into nanomedicines can improve their in vivo biodistribution  [  99  ] . 
Early investigations using liposomes containing surface-conjugated, tumor-specifi c 
antibody showed that cancer targeting liposomes accumulated in the targeted tumor 
tissues twice as much as control liposomes  [  100  ] . Later, the work by Park and 
coworkers demonstrated that cancer targeting mediated by antibody–liposome con-
jugates had enhanced antitumor effi ciency compared to control liposomes  [  101  ] . 
However, these antibody–liposome conjugates did not show improved accumula-
tion in tumor tissues, rather the presence of antibody on liposomes improved their 
localization inside the target cancer cells  [  102  ] . Similar results showing improved 
accumulation inside the targeted cells rather than enhanced total tissue concentra-
tion were also reported by Davis and coworkers during their studies on transferrin-
polymeric nanoparticle-mediated siRNA delivery  [  103  ] . Wittrup and coworker 
developed a mechanistic model to understand and predict the complex interplay 
between particle size, affi nity, and tumor uptake  [  104  ] . Their model showed that 
particles with diameter of 50 nm or larger should have insignifi cant tumor uptake 
for both targeted and nontargeted groups, which is consistent with the observations 
by Park  [  102  ]  and Davis  [  103  ] . Despite this size limitation, it is generally accepted 
that cellular uptake and effi cacy of nanomedicines can be improved by the incorpo-
ration of targeting ligands  [  102,   103,   105  ] . Once nanoparticles extravasate into 
tumor tissue, their retention in the tissue and their uptake by cancer cells are facili-
tated by active targeting, followed by receptor-mediated endocytosis, both together 
resulting in higher intracellular drug concentration and increased effi cacy  [  102, 
  105–  107  ] . One additional aspect of vascular endothelial targeting for oncology or 
cardiovascular diseases using ligand-mediated active targeting is that the tissue 
accumulation of targeted nanomedicines is independent from the EPR effect  [  108  ] . 
Similar EPR independence was observed for immunological tissue targeting, utiliz-
ing targeted delivery systems as vaccines for active transportation from the lym-
phatic vessels to the draining lymph nodes, targeting the lymph node-residing 
dendritic cells  [  109  ] . 

 Applying the optimal combination of drug delivery vehicles and suitable target-
ing ligands for specifi c disease, targeting may become clinically important. One 
example supporting this statement is the phase I clinical study of CALAA-01 using 
Calando Pharmaceutical’s RONDEL nanoparticle delivery technology, which dem-
onstrated an RNAi mechanism of action in cancer patients  [  110  ] . RONDEL nano-
particle delivery technology, developed by Davis and coworkers  [  110  ] , is a 
transferrin-targeting, polymeric system for siRNA delivery for solid tumor therapy. 
Using multimodal in vivo imaging techniques, Davis and his team showed that non-
targeting and transferrin-targeting polymeric nanoparticles have the identical distri-
bution and tendency of accumulation in solid tumors, but the targeted particles led 
to more pronounced gene inhibition within cancer cells  [  103,   111  ] . The transferrin-
targeting ligand is used to enhance the cellular uptake of the nanoparticles, rather 
than concentrating the nanoparticles in the tumor. Davis and coworkers further dem-
onstrated that the presence of intracellularly localized nanoparticles is quantitatively 
correlated to the dose of the nanoparticles administered  [  107  ] .  
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    3.5   Current Status and Future Perspective 

 As the fi eld of cancer nanotechnology further matures with an increasing number 
of nanotechnologies moving closer to clinical applications, there is plenty of 
room for continued efforts in developing new, nanometer-sized carriers for the 
prevention of disease progression and dissemination. To achieve personalized 
anticancer nanomedicine, there are still many obstacles to overcome. Formulations 
of nanomedicines with precisely controlled parameters (i.e., drug loading, size, 
and release kinetics) in large quantity are still challenging. Techniques that can 
be broadly utilized for the incorporation of therapeutics into a variety of poly-
mers with all translational issues fully addressed are signifi cantly lacking. Much 
information has been accumulated for the correlation of various physiochemical 
properties of nanomedicines (e.g., size, surface functional groups, and shape) 
with the systemic biodistribution, and long-circulating nanomedicines can be 
prepared for some specifi c systems. However, long-circulating nanomedicines 
may not exhibit maximized anticancer effects if these nanomedicines cannot 
homogeneously distribute in solid tumor tissues and internalize into the target 
cancer cells. In fact, drug delivery nanomedicines that can successfully penetrate 
the ECM of tumor tissues are rare. Developing polymeric nanomedicines that 
can penetrate certain biological barriers (e.g., the blood–brain barrier) is still a 
formidable task for drug delivery scientists and engineers. Cancer targeting by 
incorporating homing ligands to the surface of nanomedicines has been attempted 
for many years. However, formulation of nanomedicines containing protein-
based targeting ligands (e.g., antibodies) is extremely diffi cult to control and 
may only be made on small scales. Incorporation of antibodies or aptamers into 
nanomedicines may result in improved in vivo effi cacy, but meanwhile may also 
result in increased accumulation of nanomedicines in undesired organs such as 
liver or spleen that contain a large number of macrophages cells. Solid formula-
tion of polymeric nanoparticles often resulted in aggregation during postformu-
lation processing (e.g., lyophilization), which substantially reduced their clinical 
applicability. Although these challenges are diffi cult to address, synergistic inte-
gration of the efforts of chemists, materials scientists, chemical and biomedical 
engineers, and physicians may facilitate the development of anticancer nano-
medicine at an unprecedented pace and may eventually make it possible to 
develop chemotherapy in time-, tissue-, and patient-specifi c manner.      
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