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Anticancer Polymeric Nanomedicines
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Polymers play important roles in the design of delivery nanocarriers for cancer
therapies. Polymeric nanocarriers with anticancer drugs conjugated or encapsulated,
also known as polymeric nanomedicines, form a variety of different architectures
including polymer-drug conjugates, micelles, nanospheres, nanogels, vesicles, and
dendrimers. This review focuses on the current state of the preclinical and clinical
investigations of polymer-drug conjugates and polymeric micelles. Recent progress
achieved in some promising fields, such as site-specific protein conjugation,
pH-sensitive polymer-drug conjugates, polymer nanoparticles for targeted cancer
therapy, stimuli-responsive polymeric micelles, polymeric vesicles, and dendrimer-
based anticancer nanomedicines, will be highlighted.
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An Introduction to Polymeric Nanomedicines in Cancer Drug Delivery

Nanotechnology is making a significant impact on drug delivery. There is a growing

interest in integrating nanotechnology with medicine, creating so-called nanomedicine

aiming for disease diagnosis and treatment with unprecedented precision and efficacy.1

In the past few years, resources allocated to the development of nanomedicine

increased dramatically, highlighting the importance of this evolving field. In drug

delivery, nanomedicine is a recently developed term to describe nanometer sized

(1–1000 nm), multi-component drug or drug delivery systems for disease treatment.2

The existing challenge of drug delivery is to design vehicles that can carry sufficient

drugs, efficiently cross various physiological barriers to reach disease sites, and cure

diseases in a less toxic and sustained manner. As most physiological barriers prohibit

the permeation or internalization of particles or drug molecules with large sizes and

undesired surface properties, the main input of nanotechnology on nanomedicine is to

miniaturize and multi-functionalize drug carriers for improved drug delivery in a time-

and disease-specific manner.

Although nanomedicine was conceptualized only recently,1–5 nanotechnology has been

employed in drug delivery for decades.6,7 For example, nanoparticulate liposomes were first
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7 introduced more than 40 years ago.7 Today, a handful of liposome based, nanoparticulate

delivery vehicles have been approved by the FDA for clinical applications.2,8 The use of

colloidal nanoparticles in drug delivery can date back to almost 30 years.2,6 They became

clinically promising when long circulating, stealth polymeric nanoparticles were

developed.9 Both micelles and polymer-drug conjugates have been investigated for more

than two decades for the treatment of various diseases including cancer.4,10 The support

from both government and industry, the breakthroughs in fundamental nanoscale

science and engineering, and the progress of translational science that integrates medicine

and nanotechnology has impacted and will continue to impact the development of

nanomedicine.

The application of nanotechnology to clinical cancer therapy, also known as cancer

nanotechnology, was recently detailed by Ferrari et al.3 Cancer is the second leading

cause of death in the United States, accounting for 22.7% of total mortality in

2003.11 Although significant efforts have been devoted to cancer diagnosis and

therapy, cancer induced mortality continues to rise.11 In cancer drug delivery,

delivery strategies can be categorized as either lipid-based or polymer-based. Lipid-

based nanomedicines, mainly in the form of liposomes, have been extensively

reviewed.8,12–15 This review will only focus on various polymer-based nanocarriers

that have been developed for cancer therapy. Polymeric-drug nanomedicines to be

discussed in details are polymer-drug conjugates16–19 and polymeric micelles,10,20–26

some of which have either been approved for clinic use or currently under clinical

investigations.2,18,27 Other newer delivery systems, such as dendrimers28–32 and

polymeric vesicles33–39 that have been developed and employed in cancer drug delivery

(Fig. 1), will also be discussed.

Development of Polymer-Drug Nanomedicines: Conjugation Versus
Encapsulation

One of the central themes of drug delivery is to improve the pharmacological and pharma-

cokinetic profiles of therapeutic molecules. Drug molecules (small molecule or macro-

molecules) can be either released through the cleavage of a covalent linkage between

drug molecules and polymers (conjugation) or through the diffusion from a drug and

polymer blended matrix (physical encapsulation).

The covalent conjugation approach was first introduced by Ringsdorf in 1975.40,41 In

his postulated model of a polymer-drug conjugate, multiple drug molecules are bound to

polymer side chains through covalent, cleavable bonds. The cleavage of the polymer-

drug linker results in the release of the attached drug molecules. This concept received

immediate attention since it was introduced. In the late 1970s, Kopecek, Duncan and

others started to develop N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer and

designed the first synthetic polymer-drug conjugate.42 Their efforts led to a handful of

HPMA-drug conjugates that later entered several clinical trials.2,43 Using the same

strategy, Maeda and colleagues developed SMANCS conjugate by covalently linking the

anticancer drug neocarzinostatin (NCS) to two styrene maleic anhydride (SMA) polymer

chains.44 They successfully brought this antitumor protein conjugate to the Japanese

market in 1994 as the first polymer-protein conjugate approved for human cancer

treatment.2 Since these early studies, many different polymers have been developed and

evaluated as delivery vehicles for both protein and small molecules.2,17,18,43,45 However,

only a limited number of polymeric carriers have reached clinical trials (Fig. 2).43

R. Tong and J. Cheng346
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Nano-sized polymer-drug conjugates based on these polymers as well as the other promising

candidates will be discussed in section on polymer-drug conjugates.

The physical encapsulation approach controlling drug release from a polymer matrix

was originated from the seminal work by Folkman and Long in 1964.46 They reported that

hydrophobic small molecules could diffuse through the wall of silicone tubing at a con-

trolled rate. Later, Langer and Folkman developed the first polymer-based slow-release

system.47 They found that a soybean trypsin inhibitor could be encapsulated and

released from an ethylene-vinyl acetate copolymer matrix over a 100-day period. This

Figure 1. Schematic illustration of various polymeric nanomedicine drug delivery systems.

Anticancer Polymeric Nanomedicines 347
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is the first report of sustained release of protein and other macromolecules from polymer

matrix. This concept was extended to the development of Gliadel, an implantable wafer

that can slowly release 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) from a degradable

poly[bis(p-carboxyphenoxy) propane-sebacic acid] matrix for brain tumor treatment.

Through the efforts of Langer, Brem and others,48–50 Gliadel was approved by the

FDA in 1996 as the first treatment to deliver chemotherapeutics directly to the tumor

site using controlled release techniques.

The physical encapsulation approach was also applied to the development of a variety

of nanometer sized delivery vehicles, many of which are based on the aggregation of

hydrophobic polymers (polymeric nanoparticles)51 or the self-assembly of the hydro-

phobic polymer domain of an amphiphilic block-copolymers (polymeric micelles and

vesicles).10,33,34,52,53 Compared to polymer-drug conjugates with sizes generally around

10 nm or less, nano-aggregates formed through phase-separation are larger, typically in

a range of 20–100 nm for micelles24 and 100 nm to a few micrometers for polymer

vesicles.35,36,54 Nanocarriers based primarily on physical encapsulation will be covered

in section on polymeric micelles.

Figure 2. Polymers in clinical trials as vehicles for conjugated therapeutics.
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Polymer-Protein Conjugates

The application of proteins and peptides as anticancer therapeutics has expanded rapidly in

recent years. It is estimated that more than 500 biopharmaceuticals have been developed.55

Protein and peptide biopharmaceuticals commonly suffer from their pharmacokinetic and

pharmacological drawbacks such as short circulating half-lives, immunogenicity, instability

against proteolytic degradation, and low solubilities. In addition to the manipulation of

amino acid sequence to reduce immunogenicity and improve stability, the conjugation of

hydrophilic polymers to proteins is frequently employed to overcome these drawbacks. A

covalent link of hydrophilic polymers and protein therapeutics to form polymer-protein con-

jugates is the most widely adopted strategy. Research on protein modification with polymers

started in the late 1960s and early 1970s with dextran as the modifying polymer. However,

significant progress in this field was achieved after poly(ethylene glycol) (PEG) was intro-

duced by Frank Davis for protein modification (so-called protein pegylation).56,57

PEG is a linear polyether terminated with 1-2 hydroxyl groups (Fig. 2). It is highly

flexible, highly water soluble, non-degradable, non-toxic, and non-immunogenic.58 The con-

jugation of PEG to a protein or peptide can shield antigenic epitopes of the polypeptide,

resulting in significant reduction of the recognition by reticuloendothelial system (RES).

Because of the steric effect, pegylation also reduces protein degradation by proteolytic

enzymes. In addition, PEG conjugation increases the molecular weight (MW) and the hydro-

dynamic volume of proteins, resulting in decreased blood clearance by renal filtration.

Protein pegylation involves labile biopharmaceutical molecules, therefore coupling

reactions are usually carried out under mild conditions. The amino functional groups

(or other groups such as thiol and hydroxyl) in proteins are frequently used as the nucleo-

philes to attack an activated ester of PEG. PEGs are then bound to the 1-amino groups of

lysine residues or the N-terminal amino group of the protein. In addition to the amino

function groups on lysine, other conjugation sites include the side chain of cysteine,

histidine, tyrosine, and serine.58 Uncontrollable, multi-site pegylation is one of the

major drawbacks of pegylation, which leads to pharmaceutical products with hetero-

geneous structures and reduced activities.58 For instance, interferon-a2b (IFN-a2b)

coupled with an activated 12 kDa mPEG forms as many as 15 different PEG-IFN-a2b

products.58 Less than 10% of bioactivity (relative to the original IFN-a2b) remains after

the conjugation of PEG on Lys-83 and Lys-121 of IFN-a2b.58 Bioactivities of these

pegylated IFN-a2b vary dramatically, presumably due to the blocking of certain active

sites by PEG. Despite these difficulties, several pegylated systems have received regulat-

ory approvals for clinical applications, such as Oncaspar (pegylated asparaginase) for the

treatment of acute leukemia and Neulasta (pegfilgrastim) for stimulating neutrophil pro-

duction that are depleted during chemotherapy.18 The powerful pegylation techniques

have been extended to the delivery of other macromolecules. A branched PEG-anti-

VEGF aptamer (Pegaptanib sodium injection, Macugen) was approved recently by the

FDA for the treatment of neovascular age-related macular degeneration,59 which demon-

strated the utility of PEG for the systemic delivery of nucleic acids.

The reduction of protein activities of pegylated IFN-a2b is due primarily to

uncontrollable PEG conjugation, which suggests the necessity of developing site-

specific pegylation. The design of newer generation pegylated proteins have mainly

focused on the use of branched or heterodifunctional linear PEG that are capable of con-

trolling site-specific, stepwise conjugation. Recently, a unique site-specific pegylation

Anticancer Polymeric Nanomedicines 349



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f I
lli

no
is

] A
t: 

20
:4

9 
2 

A
ug

us
t 2

00
7 through the formation of a three-carbon bridge was reported by Brocchini, Shaunak, and

coworkers.60 They exploited the chemical reactivity of both thiols in an accessible

disulfide bond in a protein molecule for pegylation. An exterior S-S bond in the protein

was reduced to a pair of SH groups, both of which subsequently reacted with one PEG

monosulfone, a molecule that is specifically designed for interactive bisalkylation with

the two SH groups. The “insertion” of PEG to the disulfide bond showed minimum dis-

turbance to the protein structures. This technique can be potentially applied for site-

specific pegylation of numerous proteins containing disulfide bonds.

The further development of site-specific conjugation relies on the advancement of

new conjugation chemistry. In 2001, click chemistry was introduced by Sharpless and

coworkers, which received immediate recognition for its potential in site-specific biologi-

cal conjugation.61,62 Click chemistry usually gives very high yields, and proceeds in very

mild condition. Ligand conjugation induced by click chemistry has been successfully

carried out both in situ63 and in vitro.64,65 One type of click chemistry, the Azide-

Alkyne Huisgen cycloaddition, is particularly important to site-specific protein conju-

gation through the formation of 1,2,3-triazole between an azide and an alkyne.66 In this

reaction, a 1,3-dipolar cycloaddition between an azide and an alkyne gives a 1,2,3-

triazole.62 The conjugation of cellular glycans with fluorescent tags through click

chemistry, for example, resulted in rapid, versatile, and site-specific covalent labelings.66

Tirrell and coworkers demonstrated that click chemistry can be used for site-specific

conjugation of the fluorescent tag to genetically engineered proteins containing non-

natural homopropargylglycine or ethynylphenylalanine.67,68 The introduced alkynyl

groups on these non-natural amino acids provide sites for the attachment of fluorescent

dyes containing azide groups (shown in Fig. 3). Recent advance in protein engineering

makes it possible to incorporate many non-natural amino acids to any specific position in

a protein. Therefore, this technique may potentially be applied to the site-

specific pegylation that gives minimum disturbance to the structure and activity of proteins.

Polymer-Small Molecule Drug Conjugates

The conjugation of hydrophobic small molecule drugs to hydrophilic polymers has been

actively pursued for improved pharmacological and pharmacokinetic properties of the

Figure 3. Schematic illustration of site-specific labeling of protein through click chemistry.
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7 therapeutic molecules. In general, polymer-drug conjugates have increased aqueous solu-

bility, reduced toxicity, and prolonged plasma circulation half-life compared to free drugs.

Polymer-drug conjugation may also change the internalization pathway of small

molecules by bypassing P-glycoprotein associated multi-drug resistance.69 Polymers

that are particularly important and have track records of preclinical success for small

molecule conjugation include N-(2-hydroxypropyl)methacrylamide (HPMA)

copolymer,70–73 PEG,74–78 poly(glutamic acid) (pGlu),79–82 dextran,83–86 and cyclodex-

trin-based polymer (Fig 2).87–90 Conjugates of various anticancer drugs with these

polymers are currently in clinical trials (Table 1). Other polymers that have been success-

fully developed and are currently in clinical trails include polymannopyranose,91

albumin,92 and antibody.93–95

PEG has been used for the conjugation and delivery of paclitaxel (PTXL),75 doxoru-

bicin (DOXO)96 and camptotehcin (CPT).76,77,97–99 Linear PEG only has two terminal

hydroxyl groups for conjugation, which limits its drug-carrying capacity. A PEG-CPT

conjugate (Prothecan),100 for example, only has about 2 wt% CPT linked to PEG.101

PEG-CPT conjugates showed antitumor efficacy in various preclinical studies,76,98,102,103

and have also been tested clinically.100 In a biodistribution study, the plasma half-life

of a 20 kDa PEG-DOXO conjugate was found to be less than 10 hours.96 Protracted

antitumor activity was observed with prolonged circulation and improved tumor accumu-

lation due to the Enhanced Permeability and Retention (EPR) effect (Fig. 4).104 In a phase-

I clinical study, PEG-CPT showed a 77-hour plasma clearance half-life,100 which is much

greater than that of a similar system in mice.96 A recent study showed that coupling of

PEG and CPT through an alanine ester linker can induce apoptosis in tumor and

decrease apoptosis in liver and kidney as compared to free CPT.103 Extended circulation

and slow release of CPT may also contribute to the observed neutropaenia and

thrombocytopaenia.100

HPMA-drug conjugates are another type of conjugates that have been extensively

evaluated in clinic.42,105,106 HPMA is very water soluble, biocompatible, and non-degradable,

which resembles PEG to some degree. To ensure complete clearance of non-degradable

polymers from circulation, polymer MWs have to be maintained at or below 45–

50 kDa.107 Most HPMA copolymers tested in vivo are 30 kDa or shorter.70,108–110

However, the HPMA-drug conjugates with such low MWs showed fast renal clearance,

which may adversely affect their antitumor efficacy. Enhanced accumulation through

EPR effect for polymer-drug conjugates with MWs at or around its renal clearance

threshold (40–45 kDa) is as effective as their higher MW analogues.104,111 Compared

to PEG, HPMA has a large number of pendent functional groups that allow the conju-

gation of many hydrophobic small molecules on each HPMA polymer. The drug

loading capacity of HPMA is thus significantly larger than that of PEG and is comparable

to that of pGlu. The HPMA copolymer conjugates with PTXL,109 CPT,110,112,113

DOXO,70,108,114 and the platinate115 have all been evaluated in various clinical trials.

pGlu, a biodegradable polypeptide, has also been used for small molecule drug

delivery. pGlu has a large number of pendant carboxyl groups, which makes pGlu

extremely water soluble. As much as 30 wt% of PTXL116,117 or CPT79 can be conjugated

to pGlu, which is much higher than that in PEG conjugates. The resulting pGlu-CPT or

pGlu-PTXL still showed sufficiently high water solubility. PTXL molecules linked to

pGlu through a degradable ester bond can be released at a controlled hydrolysis rate.

The release rate is usually significantly enhanced when the pGlu-PTXL is internalized

to cell and exposed to a harsh endolysosomal environment. PTXL and CPT conjugated

to pGlu showed enhanced preclinical antitumor efficacy in several preclinical tumor

Anticancer Polymeric Nanomedicines 351
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Table 1

Polymer-drug conjugates in clinical trials

Name Polymer Drug Linker Company Target Status Ref.

Prothecan PEG

(40 kDa)

CPT Ester Enzon SCLC Phase II 99, 220

PK1 HPMA

(30 kDa)

DOXO Gly-Phe- Leu-Gly CRC/Pharmacia Various

cancers

Phase II 70, 108

PK2 HPMA

(30 kDa)

DOXO Gly-Phe- Leu-Gly CRC/Pharmacia Various

cancers

Phase I

discontinued

114

PNU-166945 HPMA

(40 kDa)

PTXL Ester Pharmacia Various

cancers

Phase I

completed

109

MAG-CPT HPMA

(30 kDa)

CPT Gly-6-

aminohexanoylgly

Pharmacia Various

cancers

Phase I

completed

110, 113

AP5280

AP5286

HPMA

(25 kDa)

Diamine-

platinum(II)

Gly-Phe- Leu-Gly Access

Pharmaceuticals

Various

cancers

Phase I

completed

221–224

AP5346 HPMA

(25 kDa)

Oxaliplatin Gly-Gly-Gly Access

Pharmaceuticals

Head and neck

cancer

IND approved 225

3
5
2
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CT-2103

(XYOTAX)

PG

(40 kDa)

PTXL Ester Cell Therapeutics Various

cancers

Phase III 116–119

226–228

CT-2106 PG

(50 kDa)

CPT, 5-Fu Gly-ester Cell Therapeutics Various

cancers

Phase I 79

MTX-HSA Albumin

(67 kDa)

MTX — AK St. Georg Advanced

cancers

Phase II 92, 229–232

DOXO-

EMCH

Albumin

(67 kDa)

DOXO Hydrazone Tumor Biology

Center

Various

cancers

Phase I 143

IT-101 CD polymer CPT Gly ester Insert

Therapeutics

Various

cancers

Phase I 87–90

DAVANAT Polymanno-

pyranose

5-Fu, AV and

LV

— Pro-

Pharmaceuticals

Colorectal

cancer

Phase II 91

AD-70 Dextran

(70 kDa)

DOXO Schiff base Alpha Therap.

GmbH

— Phase I 129

HuC242-

DM4

humAb

huC242

MTS-DM4 — ImmunoGen Various

cancer

Phase I —

BB-10901 humAb

N901

MTS-DM1 — ImmunoGen SCLC and

CD56-SC

Phase II 93–95, 144

5-Fu ¼ 5-Fluorouracil; LV ¼ Leucovorin; CPT ¼ Camptothecin; PTXL ¼ Paclitaxel; AV ¼ Avastin; MTS ¼ maytansinoid; SCLC ¼ small-cell lung cancer;
DOXO ¼ doxorubicin; MTX ¼ methotrexate; humAb ¼ humanized monoclonal antibody; CD56-SC ¼ CD56-positive SC carcinoma.

3
5
3
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models presumably due to the EPR-mediated passive tumor targeting.81,116,118 Interest-

ingly, pGlu-PTXL also showed a positive response in taxane-resistant patients in

several Phase I and II studies of various cancers.119 A recently completed Phase III trial

of pGlu-PTXL in combination with standard chemotherapy against ovarian cancer and

non-small-cell lung cancer (NSCLC) suggests that estrogen may participate in regulating

the in vivo efficacy of pGlu-PTXL. pGlu-PTXL was found efficacious only in a certain

group of patients, such as pre-menopausal female NSCLC patients. A pGlu-CPT

conjugate (CT-2106) with CPT linked to pGlu through a glycine linker with 33–35

wt% loading is currently in phase I/II trials.79

Cyclodextrin (CD)-containing polymer is a new class of hydrophilic biomaterials that

has recently been developed for drug delivery. CDs are cyclic oligomers of glucose that can

form water-soluble inclusion complexes with numerous hydrophobic molecules with com-

patible sizes. CDs are biocompatible, non-immunogenic and non-toxic, therefore they have

been extensively used in many pharmaceutical applications to improve the bioavailability

and solubility of drugs.120 CD-containing polymers have also been developed and used

for decades.121,122 Because CD has many hydroxyl groups, CD-containing polymers are

usually heavily crosslinked with uncontrollable compositions and limited applications. In

1999, Davis and coworkers developed the first linear, b-cyclodextrin polymer (b-CDP)123

bearing cationic pendant groups for gene delivery.123–128 CDPs were further modified to

introduce pendant carboxyl groups (Fig. 2) for CPT conjugation (IT-101, Fig 5). CDPs

are very water-soluble (over 200 mg/mL), and can increase the solubility of CPT by

three orders of magnitude after conjugation.88

A pharmacokinetic study in rats showed a half-life of bound CPT in IT-101 is 17–

19 h, which is significantly longer than CPT alone.90 The half-life is also longer than

those of PEG-CPT and HPMA-CPT, which may be due in part to the high MW of the

b-CDP tested (85 kDa).90 IT-101 forms large particles (�50–80 nm) in solution presum-

ably through the interchain interaction between CPT and CD. This unusual nano-aggrega-

tion is in sharp contrast to most polymer-drug conjugates reported so far whose sizes are

typically ranged from 5 to 15 nm. The increase in particle size of IT-101 likely reduces its

clearance through glomerular filtration, thus enhancing its in vivo antitumor efficacy.89

Protracted antitumor activity was observed in LS174T colon carcinoma tumor-bearing

mice87 as well as in a number of other irinotecan-resistant tumors (MDA-MB-231,

Panc-1, and HT29),89 which is consistent with the hypothesis that polymer-drug conju-

gates may overcome multi-drug resistance. An open-label, dose-escalation Phase I

study using IT-101 in patients with inoperable or metastatic solid tumors has recently

been initiated.

Figure 4. Schematic illustration of enhanced permeability and retention (EPR) effect.

R. Tong and J. Cheng354
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Polysaccharides were also developed for the delivery of small molecule therapeutics.

DAVANAT, a (1–4)-linked-b-D-mannopyranose]-[(1–6)-linked-a-D-galactopyranose]

polymer, is currently in phase-II trial for colorectal cancer treatment with a combination

of 5-fluorouracil (5-FU), avastin and leucovorin.91 DAVANAT binds to surface lectins,

proteins that are overexpressed in metastatic tumor cells and mediate cell association,

apoptosis, and metastasis. The interaction of DAVANAT with lectin may promote

transport of 5-FU into the tumor cells. A Phase I open-label study showed that

DAVANAT alone or in combination with 5-FU were well tolerated in patients, which

facilitated its Phase II clinical trials.91

Besides polymannopyranose, other polysaccharides such as dextran and dextran

derivatives have also been used for the delivery of small molecule drugs (Fig 2).

Dextran is biocompatible to some extent, and has been approved for certain clinical appli-

cation (e.g., as plasma expander). An oxidized form of dextran (70 kDa) was conjugated

with DOXO through a Schiff base linker, and the resulting conjugate (AT-70) was sub-

sequently evaluated preclinically and clinically. Severe hepatotoxicity was observed, pre-

sumably due to the uptake of dextran by the reticulendothelial systems (RES).129 DE-310,

another dextran-based conjugate with a 340 kDa carboxymethyldextran polyalcohol con-

jugated with CPT analogue DX-8951 through an Gly-Gly-Phe-Gly linker, was also tested

in clinic.84,130–132 The formation of amide, instead of ester linkages, reduced drug release

from DE-310 during systemic circulation. As the peptidyl linker is enzymatically degrad-

able, DX-8951 can presumably only be released after DE-310 is taken up by cells to endo-

lysosomal compartments with active proteinases. Thus drug release can be specifically

controlled inside cells.84 A Phase I study showed dose-limiting toxicities due to thrombo-

cytopaenia and neutropaenia.131

Figure 5. Schematic illustration of IT-101, a conjugate between 20(S)-camptothecin and a linear,

b-cyclodextrin-based polymer through a glycine ester linker.

Anticancer Polymeric Nanomedicines 355
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increased polymer MW,104 it has been actively pursued to develop degradable, high

MW polymers using biocompatible building blocks. Duncan and coworkers developed

water-soluble and biocompatible polyacetals through the condensation of PEG and

tri(ethylene glycol) divinyl ether (Fig. 6).111,133,134 The acetal moiety was chosen

because it can undergo faster hydrolysis under mildly acidic conditions but is stable at

physiological pH. As the main-chain of the polyacetals can be hydrolyzed to small,

renal-clearable fragments, the polymer can be made significantly larger than 45 kDa for

prolonged circulation in blood. One drawback is that the polyacetals were prepared

through step-growth polymerization that gave polymers with fairly broad MW distri-

butions (in a range of 1.8–2.6).111,133,134 The polyacetals displayed remarkable tunability

for pH-induced degradation. Enhanced hydrolysis was observed at pH 5.5 (41%Mw loss in

25 h) as compared with that at pH 7.4 (10% Mw loss in 73 h). In addition, the polyacetals

and their degradation products are non-toxic in vitro (IC50 .5 mg/mL in B16F10 cells)

and in vivo. Amine pendant functional groups were incorporated through terpolymeriza-

tion (Fig. 6), which was used for drug conjugation. A biodistribution study showed no pre-

ferential accumulation of the polymer in the major organs. In C57 xenograft mice bearing

a subcutaneous B16F10 tumor, the pharmacokinetics of intravenously administered poly-

acetal-DOXO (Mw ¼ 86 kDa, Mw/Mn ¼ 2.6) and HPMA copolymer-GPLG-DOXO

(Mw ¼ 30 kDa, Mw/Mn ¼ 1.3–1.5) were compared.111 Both polyacetal-DOXO and

HPMA copolymer-DOXO displayed similar biphasic pattern of plasma clearance with a

t1/2a of �1 h presumably due to the presence of low MW fragments. But the plasma

levels of polyacetal-DOXO were significantly higher than those for HPMA copolymer-

DOXO with a t1/2b of 19 h and 3.5 h for polyacetal-DOXO and HPMA copolymer-

DOXO, respectively. The t1/2b of polyacetal-DOXO is quite similar to that of the cyclo-

dextrin polymer with a similar MW (85 kDa, t1/2b ¼ 17–19 h).90 Because prolonged

plasma circulation is the driving force for increased passive tumor targeting,135,136 poly-

acetals with higher MWs and lower polydispersities may give improved circulation half-

life and tumor accumulation. It is noted that polyacetal-DOXO, although with the MW

Figure 6. pH-Sensitive polyacetal for DOXO delivery.
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7 much higher than the HPMA copolymer conjugates, showed a reduced accumulation in

the liver and the spleen.133 The high PEG content in polyacetal may contribute to the

lower uptake by the RES system.

Polyacetals can also be prepared through selective degradation of polysaccharides.

Papisov and coworkers developed acyclic hydrophilic polyals through the lateral cleavage

of polyaldoses and polyketoses.137,138 Polyals obtained through this method consist of

acyclic carbohydrate substructures that are potentially biocompatible. The intra-chain

acetal or ketal groups should enable hydrolytic biodegradation upon cell uptake. In an in

vivo toxicity study, all mice survived intravenous administered of a 160-kDa polyacetal

at a dose as high as 4 g/kg. The polymer gave very low RES response and showed low

tissue accumulation even at MW as high as 500 kDa. This class of polymers contains a

large number of pendant functional hydroxyl groups, whichmake it easy for structural modi-

fication and drug conjugation. However, it is difficult to control the sites of periodate

oxidation, which leads to polymers with poorly controlled compositions.

Albumins have also being evaluated as drug carriers in clinical trials. A methotrexate-

human serum albumin conjugate (MTX-HSA) was synthesized by coupling MTX to

HSA.139–141 MTX–HSA showed significant accumulation in rat tumors and displayed

high in vivo antitumor activity. In a phase I study, patients with renal cell carcinoma

and mesothelioma responded to treatment with MTX–HSA therapy.141 In a phase II

study of MTX-HSA in combination with cisplatin as first line treatment of advanced

bladder cancer,92 a positive response was observed. The combination strategy showed

promise for the treatment of urothelial carcinomas with acceptable toxicity. An

albumin-DOXO conjugate (DOXO-EMCH) was also developed through an acid-

sensitive 6-maleimidocaproyl-hydrazone linker.142 The covalently linked DOXO

prevents its rapid diffusion of DOXO into healthy tissue after intravenous administration

and allows passive accumulation of DOXO-EMCH through EPR effect in solid tumors.

DOXO is then released in the acidic environment of tumor tissue through the cleavage

of the hydrozone linker. A Phase I study of DOXO-EMCH in 10 patients (6 female, 4

male) showed that DOXO-EMCH could be tolerated up to 40 mg/m2.143

Antibodies have also been extensively used for drug conjugation, creating immuno-

conjugates as an important group of therapeutics for cancer treatment. For example,

BB-10901 (Table 1), a humanized mAb conjugated with cytotoxic maytansinoid DM1

for small-cell lung cancer treatment is currently in Phase I/II clinical trial.93–95,144 Immu-

noconjugates for cancer treatment is beyond the coverage of this review, and has been

reviewed elsewhere.145 It is worth reporting that an alternative strategy of using

aptamer for targeted DOXO delivery was developed recently.146

Polymeric Micelles

Amphiphilic block copolymers can self-assemble in aqueous solution to form core-shell

micellar nanostructures when the concentrations of the amphiphilic block copolymer

are above the critical micellar concentration (Fig. 7). Polymer micelles have a

condensed, compact inner core, which serves as the nanocontainer of hydrophobic

compounds. As polymer micelles are generally more stable than hydrocarbon based

micelles, sustained drug release from polymeric micelles becomes possible.20,24

Numerous types of amphiphilic copolymers have been employed to form

micelles4,10,52,147–150 or other similar architectures such as nanogels151 and polymer nano-

particles.51 Detailed copolymers structure and drug molecule encapsulated or conjugated

are summarized in Table 2.
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Polymeric micelles can accumulate in tumors after systemic administration. Their

biodistributions are largely determined by their physical and biochemical properties,

such as particle sizes, hydrophobicity, and hydrophilicity of the polymers and drugs,

and surface biochemical properties.152 A major issue that limits the systemic application

of micellar nanocarriers is the nonspecific uptake by the RES. It is critical to have systems

that can circulate for a long time without significant accumulation in the liver or the

spleen. The sizes and the surface features of micelles have to be controlled for favored

biodistribution and intracellular trafficking.9 The hydrophilic shells of micelles usually

consist of PEGs which prevent the interaction between the hydrophobic micelle cores

and biological membranes, reduce their uptake by the RES, and prevent the adsorption

of plasma proteins onto nanoparticle surfaces.22 Micellar nanocontainers are typically

in a range of 20–100 nm. The sizes of polymeric micelles resemble that of natural trans-

porting systems (e.g. virus and lipoprotein), which allow efficient cellular uptake via endo-

cytosis.153 It was also found that the effect of size on polymer micelle biodistribution is

organ specific and non-linear.154 Therefore, controlling the sizes of micelles in a prede-

fined range can be critical for desired applications. Parameters controlling the size of

micelles include relative length of polymer blocks, polymer composition, and the

solvent and drug used for encapsulation. A recent study indicated that the mean volumetric

size of PEG-b-PLGA micelles correlates linearly with polymer concentration during self-

assembly with linear correlation coefficient � 0.99. Such linear correlation may provide

means for preparing polymeric micelles with desirable sizes.155

PEG-Polypeptide Micelle

PEG-b-poly(aspartic acid) [PEG-b-pAsp] micelles and their DOXO conjugates (NK911)

were developed by Kataoka and coworkers.156 This is one of the most intensively inves-

tigated micellar drug delivery vehicles. DOXO molecules were conjugated to the

Figure 7. Polymeric micelle core-shell structure and drug encapsulation.
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Table 2

Polymeric nanoparticles: polymer structures and drug incorporated

Block copolymer Drug (or Dye)references

PEG-b-pAsp Doxorubicin,233,237 Methotrexate,238 Indomethacin,239 Amphotericin-B,240,243 KRN 5500,159

Cisplatin,244,245 Nile Red168

PEG-b-pGlu(Bn) Clonazepam246

PEG-b-pGlu Cisplatin161

PEG-b-pHis/PLA pH-sensitive micelles; Doxorubicin247,248

PEG-b-pLys Cisplatin249

PEG-b-polyester

PEG-b-PCL Indomethacin,250,251 Dihydrotestosterone,252 FK506,253 253L-685,818253 Nimodipine254

PEG-b-PLA Paclitaxel,255,257 Doxorubicin258

PEG-b-PLGA Doxorubicin,259 Paclitaxel,260 Docetaxel,167 155 Doxorubicin/combretastatin162

PEG-b-polyether (nanogel)

Pluronic-P85 Daunorubicin,261 Doxorubicin,261,262 Vinblastine,261 Mitomycin,261 Cisplatin,261 Methotrexate,261

Epirubicin,261 Paclitaxel,263 Etoposide,263 Digoxin264

Pluronic-F127 Nystatin265

Pluronic-F68 Nystatin265

(continued )
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Table 2

Continued

Block copolymer Drug (or Dye)references

Other homopolymer and block polymers

PEG-b-PMA Pyrene,266 Nile Red170

pLys(EG)-b-pLeu DiOC18 dye
36

pArg-b-pLeu Fluoreseince35,54

pLys-b-pLeu DiOC18 dye
47

PUA-b-PNIPAAm N/A267

PNIPAAm/PDMAAm-b-PCL/PLA Pyrene268

PLA-PEG-PLA Doxorubicin269

Poly(orthoester) DNA vaccine270

Poly(b-amino ester) DNA and dye271,272

Polyketal N/A273

Abbreviations: PNIPAAm ¼ poly(N-isopropylacrylamide); PUA ¼ poly(undecylenic acid) (PUA); pAsp ¼ poly(aspartate); pGlu(Bn) ¼ poly(benzyl-
glutamate); pLys ¼ poly(lysine); pHis ¼ poly(histidine); PCL ¼ poly(caprolactone); PLA ¼ poly(D,L-lactide); PLGA ¼ poly(D,L-lactic acid-co-glycolic acid);
PMA ¼ polymethacrylate; EG ¼ oligo(ethylene glycol); PDMAAm ¼ poly(N,N-dimethylacrylamide).
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7 copolymers to form micelles with diameters in the range of 15–60 nm. However, DOXO

molecules covalently conjugated to the pAsp side chain did not have therapeutic activity.

Interestingly, the conjugated DOXO molecules can promote the formation of stable p–p

interaction with the encapsulated DOXO molecules.157 In a Phase I study, the toxicity of

NK911 resembled that of free DOXO, and the dose-limiting toxicity was neutropenia.158

NK911 is currently being evaluated in a phase II clinical trial.4

The compatibility between the core-forming blocks and the drugs to be loaded

controls the drug loading capacity and release rate. For example, the encapsulation of

hydrophobic therapeutic compound KRN5500, a spicamycin derivative with a long-

chain fatty acid, requires a hydrophobic core-forming block of pAsp with similar fatty

acids side chain.159 As the micelle core has no interaction with tissue during circulation,

drug loading has a minimal effect on the micelle biodistribution.

PEG-b-polypeptide micelles have also been used for the delivery of PTXL. For

example, PTXL has been incorporated into the 4-phenyl-1-butanolate modified PEG-b-

pAsp to form polymeric micelles (NK105).160 An in vivo antitumor study revealed that

NK105 was more potent than free PTXL, possibly because of the enhanced drug accumu-

lation in tumor tissues through EPR effect.

Because carboxylate groups can chelate with multivalent metal ions, amphiphilic

copolymer containing pAsp and pGlu have been used to complex with anticancer

platinum compounds, such as cis-dichlorodiammineplatinum (II) (cisplatin).161 Micelles

are formed through the ligand substitution of Cl2 on cisplatin with the carboxylate of

pAsp or pGlu. In vivo studies displayed similar extended plasma half life and tumor

accumulation as reported with other micellar drug delivery vehicles.

PEG-Polyester Micelle

Besides polypeptides, biodegradable polyesters can also be used as a micellar core-

forming block. Well-known hydrophobic polyesters include polycaprolactone (PCL),

poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and poly(lactide-co-glycolide)

(PLGA), all of which have been approved by the FDA in various clinical applications.

These polymers have different degradation profiles, which can be used to tune drug

release rates. However, because these polyesters have no pendant functional groups for

drug conjugation, drugs are predominantly incorporated to the micellar hydrophobic

core through physical encapsulation although the conjugation of DOXO through a

covalent bond to the terminal hydroxyl group of PLGA has also been tested.162

Low MWmethoxy-PEG-b-PLA was recently employed to encapsulate PTXL to form

copolymer micelles.163 Evaluation of the in vivo antitumor efficacy of this micelle in

SKOV-3 human ovarian cancer implanted xenograft mice demonstrated significantly

enhanced antitumor activity as compared with free PTXL. At Day 18 after administration,

the tumor was undetectable in all mice treated with the micelles at its maximum tolerable

dose (60 mg/kg). At the end of the experiment (1 month), all mice remained tumor-free.

Currently, this PTXL-containing methoxy-PEG-b-PLA micellar vehicles are under Phase

II clinical evaluation.164

The core-shell structures of amphiphilic micelles allow the attachment of targeting

ligands to their external surface for active accumulation in tumor tissues. Many small

molecules and antibodies have been utilized as such targeting ligands.165 Recently,

aptamers were also developed and used in targeted drug delivery.166 An A10 20-fluoropyr-

imidine RNA aptamer that recognizes the extracellular domain of the prostate-specific

membrane antigen (PSMA) was conjugated to docetaxel (DTXL)-encapsulated COOH-

Anticancer Polymeric Nanomedicines 361
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7 PEG-b-PLGA micelle (Fig. 8). The copolymer micelles have terminal carboxyl groups

extruded to the water phase, facilitating the conjugation of aptamer targeting ligands.

The aptamer containing micelle displayed enhanced antitumor activity compared to the

control group. A single intratumoral injection of docetaxel (DTXL)-aptamer nanoparticle

resulted in complete tumor remission in five of seven LNCaP xenograft nude mice as

compared to tumor remission in two of the seven mice in the control group.167

Stimuli-Responsive Polymeric Micelle

Polymer micelles that are responsive to light, pH, or temperature are potentially exciting

nanomedicine modalities for site-specific drug delivery. The mildly acidic pH in tumor

and inflammatory tissues (pH � 6.5) as well as in the endosomal intracellular compart-

ments (pH � 4.5–6.5) may trigger drug release from pH sensitive micelles upon their

arrival at the targeted disease sites. Fréchet and coworkers recently developed a pH-

dependent micelle that can release encapsulated cargos significantly faster at pH 5 than

at pH 7.4.168 An amphiphilic copolymer with acid-labile hydrophobic block (Fig. 9)

can form micelles at the physiological pH. When exposed to mildly acidic pH, an accel-

erated hydrolysis of the micelle acetal bonds (Fig. 9) results in the formation of hydroxyl

groups in the hydrophobic core, disruption of the micellar assembly, and release of the

encapsulated cargos. Another interesting pH-sensitive micellar delivery system was

reported by Kataoka and coworkers using an acid-labile hydrozone linker to conjugate

DOXO to pAsp.169 A kinetic study demonstrated pH-dependant release of DOXO, in a

manner resembling what was observed in Fréchet’s pH-sensitive micelles.

Recently, Fréchet and coworkers also reported an alternative release triggering

mechanism through the use of infrared light (Fig. 10).170 The amphiphilic structure has

a 2-diazo-1,2-naphthoquinones at the terminal of the hydrophobic end and an oligo(ethy-

lene glycol) as the hydrophilic block. When the micelles were exposed to infrared light,

Figure 8. Docetaxel-encapsulated, PLGA-b-PEG-COOH micelle and its aptamer conjugate for

targeted prostate cancer therapy.

R. Tong and J. Cheng362



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f I
lli

no
is

] A
t: 

20
:4

9 
2 

A
ug

us
t 2

00
7 

2-diazo-1,2-naphthoquinones undergoes a Wolff rearrangement and forms hydrophilic

3-indenecarboxylate, which destabilizes the micelles and causes drug releasing.

Because a high-wavelength light is safer and has better tissue penetration as compared

with a low-wavelength light, this design may potentially be used to control drug release

in deep tissues harmlessly.

Micelles may not always adopt spherical shapes. Under certain conditions, cylindrical-

shaped micelles called filomicelles can be formed by controlling the fraction of hydrophilic

domains.171 Recently, Discher and coworkers studied the biodistribution of a class of filo-

micelles that are multiple mm long and 22–60 nm in diameters.172 Surprisingly, these

long filomicelles can circulate in rodents for up to one week, which is about 10 times

longer than any known synthetic nanoparticles. Various in vitro studies suggested that

long filomicelles could respond to various biological forces to fragmentize into spheres

and short filomicelles that can be taken up by cells more readily than longer filaments.

Figure 9. pH-Sensitive polymeric micelles that can be disrupted at pH 5.

Figure 10. Formation of IR light-sensitive micelles.
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7 Other delivery vehicles, such as nanopsheres51,173–175 and nanogels176–178 can be

prepared using similar methods as micelles by forming nano-aggregates of hydrophobic

polymer segments. These systems have been extensively reviewed elsewhere,179–183

and therefore will not be covered in this review although some specific systems are high-

lighted in Table 2.

Other Promising Nanocarriers for Drug Delivery

Polymeric Vesicles

Besides forming micelles, amphiphilic block copolymers can also form vesicles when the

fraction ( f ) of the hydrophobic domain relative to the hydrophilic domain is controlled

within a certain range ( f ¼ 0.2–0.42).33,34 Polymeric vesicles form liposome-like

structures with a hydrophobic polymer membrane and hydrophilic inner cavity,

therefore they are also called polymersomes.33,53

Block copolymers self-assemble into vesicles by forming bilayers through the close

packing of lipid-like, amorphous polymer hydrophobic segments in a way similar as phos-

pholipids (Fig. 1). Compared to liposomes, polymeric vesicles are more stable because

their membrane-making polymers form much stronger hydrophobic interactions than the

short hydrocarbon segments of liposomes. Polybutadiene (PBD) is a popular bilayer-

forming polymer,33 which can be cross-linked subsequently for enhanced vesicle stability.

Other bilayer-forming polymers include biodegradable PLA and PCL for controlled drug

release,171 and polypeptides for conformation-specific vesicle assembly.35,36 Hydrophilic

blocks used in polymeric vesicles include nonionic PEG or oligo(ethylene-oxide) modified

polypeptide,36,37,171 and ionic poly(acrylic acid) or polypeptides.33,54 Triblock184–187 and tet-

rablock188 copolymers vesicles have also been developed and studied.

Polypeptides have more diverse conformations (coils, a-helices and b-sheets)

compared to synthetic polymers, therefore they are very versatile building blocks for

polymeric vesicles. Recently, Deming and coworkers developed a series of polypeptide-

based vesicles.35,36,54 In addition to the control on the relative length of hydrophilic and

hydrophobic segments that are critical to the formation of vesicles, the conformation

was found to be another important parameter controlling the formation of peptide

vesicles. Conventional uncharged amphiphilic block copolymer vesicles requires high

hydrophobic contents (approximately 30–60 mol%) to form stable vesicles.189

However, the block copolypeptides deviate from this trend and can form vesicles with

10–40 mol% hydrophobic domains. This difference is presumably because of the rigid

chain conformations of polypeptides and strong intermolecular interactions190 as

compared to PBD-PEG or PLA-PEG vesicles that have more flexible polymer

segments. Copolypeptides used in vesicle formation can be designed to adopt rod-like con-

formations in both hydrophobic and hydrophilic domains due to the strong a-helix-

forming tendencies.191 These rod-like conformations provide a flat interface on hydro-

phobic association in aqueous solution, thus driving the self-assembly into vesicle

structures.

Although polymeric vesicles have only been studied for a few years, they have shown

great promise in controlling drug loading, systemic biodistribution, and drug

release.171,172 One of the major challenges in particle-based delivery vehicles is to

control drug release kinetics. Polymeric nanoparticles, for example, can release more

than 50% of the encapsulated drugs within the first several or tens of hours due to burst

effect.192 In polymeric vesicles, precise tuning of the drug release rates can be achieved
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7 through blending vesicle-forming copolymers with a hydrolyzable copolymer (e.g., PLA-

PEG). The hydrophilic, hollow interior space of vesicles should also find application in

encapsulation and delivery of hydrophilic therapeutics, such as DNA and proteins.

Recently, a polyarginine-polyleucine copolymer vesicle demonstrated excellent intra-

cellular trafficking properties.35 The arginine domains not only promote vesicle

formation, but also mimic the properties of protein transduction domain193 to enhance

cell membrane penetration.

Dendrimer and Dendritic Polymer Nanocarriers

Dendrimers are a class of monodisperse macromolecules with highly branched,

symmetric, three-dimensional architectures (Fig. 1). They were first reported in the late

1970s and early 1980s.194–196 Dendrimers contain layered structures (also known as gen-

erations) that extend outwards from a multifunctional core on which dendritic subunits are

attached.197 The sizes of dendrimers are in a range of 1–15 nm.

Syntheses of multi-generation dendrimers involve alternative repetition of a gener-

ation-growth and an activation step. Depending on the direction to which dendrimer

grows, the synthetic strategies can be classified as divergent195,196,198 or convergent.199,200

Preparation of dendrimers requires alternate and stepwise control on each chain propa-

gation step which resembles solid-phase peptide synthesis to some extent, therefore the

synthesis of the dendrimer can be time-consuming and label-intensive, especially for

the preparation of monodisperse dendrimers with high generations. The initial efforts in

dendrimer research focused primarily on the development of various synthetic methods

and the investigation of the physical and chemical properties of dendrimers.201–207 In

the past 10 years, significant efforts have been devoted to explore the potential appli-

cations of dendrimer in drug delivery.28,29,32,45,198,208,217

Drug molecules can either be conjugated on the surface or encapsulated inside of a

dendrimer. The periphery of a dendrimer usually contains multiple functional groups

for the conjugation of drug molecules or targeting ligands. Surface conjugation is straight-

forward and easy to control, therefore the majority of dendrimer-based drug delivery is

through this covalent conjugation approach. Despite numerous designs of dendrimer-

based carriers, only a few of them have been evaluated for their in vivo antitumor

activities.31,104,218

One early example of dendrimer used as anticancer carrier in vivo is a sodium

carboxyl-terminated G-3.5 polyamidoamine (PAMAM) dendrimer for the conjugation

of cistplatin (20–25 wt%).31 When administered intravenously to treat a subcutaneous

B16F10 melanoma, the dendrimer-Pt conjugate displayed significantly enhanced

antitumor activity as compared to free cisplatin.31

The same type of dendrimer, but with increased size (G-5 PAMAM), was developed

and used for the delivery of MTX.218 The dendrimer surface charge was first reduced by

modifying peripheral amines of the G-5 PAMAM dendrimers with acetyl groups. Folate

and MTX (�9 wt%) were subsequently conjugated to PAMAM. Biodistribution study in

mice with subcutaneous tumors using radioactively labeled dendrimers displayed intern-

alization and intracellular accumulation in human KB tumors with over-expressed folate

receptors.104 Significant in vivo antitumor activity of the dendrimer-MTX conjugate was

also observed.104

Recently Szoka and Fréchet developed an asymmetric dendrimer for small molecule

delivery.32 In contrast to the non-degradable PAMAM that forms globular structures, their

degradable polyester dendrimers have bow-tie shaped molecular architecture (Fig. 11).
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The number and size of the PEG chains, and the number of drug conjugation sites can be

changed as desired, allowing the formation of a potentially large number of conjugates

with variable PEG sizes, branches and drug-loadings. Bow-tie dendrimers with MW

over 40 kDa exhibit plasma clearance half-lives greater than 24 h, which is significantly

longer than linear polymer conjugates with similar MW.104 The branched structure of

the dendrimer may attribute to the reduced renal clearance and enhanced plasma half-

lives as the dendrimers more likely hinder the glomerular filtration in kidney than their

linear analogues with similar MWs.29 Upon intravenous administration to BALB/c
mice with subcutaneously implanted C-26 tumors, dendrimer-DOXO was found to be

much more efficacious than free DOXO with less toxicity, which was presumably

related to enhanced tumor-uptake. In fact, dendrimer-DOXO displayed comparable in

vivo antitumor efficacy as Doxil, an FDA approved, liposome-based DOXO delivery

vehicle.

Compared to liposomes and micelles, dendrimer-drug conjugates may be more stable

due to their unimolecular structures, and thus are easier to handle (formulation and ster-

ilization). However, in addition to the challenge for the synthesis of monodisperse,

high-generation dendrimers, the conjugation of a large number of insoluble drugs to the

surface of dendrimers may result in significantly increased peripheral hydrophobicity,

Figure 11. Functionalization of the [G-3]-(PEO5k)8-[G-4]-(OH)16 bow-tie dendrimers for DOXO

conjugation through a pH-sensitive acyl hydrazone linker.
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7 which may subsequently lead to dendrimer aggregation and increased polydispersity.

Although surface hydrophobicity induced dendrimer aggregation may be reduced by

encapsulating drug molecules inside dendrimers and there are some efforts in developing

dendritic nanocarriers for encapsulating drugs,219 this approach is still in an early stage of

development with insufficient studies to give a full assessment.

Conclusion

Nanotechnology is making a significant impact on cancer drug delivery. In conjunction

with the development of lipids based drug delivery, the advancement of modern

polymer chemistry makes it possible for the preparation of a large variety of synthetic

polymeric materials with structures tailored to accommodate the specific needs for

systemic drug delivery. We reviewed the progress and current state of polymer-drug

conjugates and polymeric micelles, the two most extensively investigated polymeric

vehicles for drug delivery. We also discussed the exciting progress in some areas that

are potentially of importance for controlled drug delivery and cancer therapy. It is antici-

pated that synergistic integration of the efforts of chemists, materials scientists, chemical

and biomedical engineers and physicians will facilitate the development of polymeric

nanomedicine drug delivery at an unprecedented pace, and may eventually allow cancer

therapy in a time-, tissue-, or even patient-specific manner.
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