Supporting Information

Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery

Lichen Yin, Ziyuan Song, Kyung Hoon Kim, Nan Zheng, Haoyu Tang, Hua Lu, Nathan Gabrielson, Jianjun Cheng*

Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W Green St, Urbana, IL 61801, USA

*Corresponding author. Tel.: (+1) 217-244-3924; Fax: (+1) 217-333-2736
Email address: jianjunc@illinois.edu
Scheme S1. Synthetic routes of polypeptides with different architectures.
Fig. S1. 1H NMR spectrum of VB-L-glu-NCA monomer in CDCl$_3$.
Fig. S2. Representative 1H NMR spectrum of PVBLG precursor in CDCl$_3$/TFA-d (85:15, v/v).
Fig. S3. Representative 1H NMR spectrum of PEG-PVBLG conjugates precursor in CDCl$_3$/TFA-d (85:15, v/v). The copolymer composition was calculated by the integral ratio of PEG methylene protons (peak j) to the benzylic ester protons (peak d).
Fig. S4. 1H NMR spectrum of PPABLG homopolymer in TFA-d.
Fig. S5. 1H NMR spectrum of PEG-b-PPABLG diblock copolymer in TFA-d.
Fig. S6. 1H NMR spectrum of PPABLG-b-PEG-b-PPABLG triblock copolymer in TFA-d.
Fig. S7. 1H NMR spectrum of 8-arm PEG-b-PPABLG star copolymer in TFA-d.
Fig. S8. 1H NMR spectrum of (PVBLG-g-PEG)-r-PPABL G graft copolymer in TFA-d.