Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer

Jing Tian, PhD a,b,c,1, Yangzeng Min, PhD b,c,1, Zachary Rodgers, PhD b,c, Xiaomeng Wan, B.S d, Hui Qiu, M.S b,c,e, Yu Mi, PhD b,c, Xi Tian, PhD b,c, Kyle T. Wagner, B.S b,c, Joseph M. Caster, MD, PhD b,c, Yanfei Qi, PhD b,c,h, Kyle Roche, PhD b,c, Tian Zhang, MD f, Jianjun Cheng, PhD g, Andrew Z. Wang, MD b,c,*

1 These authors contributed equally to this work.

1 School of Biological and Environmental Engineering, Tianjin Vocational Institute, Tianjin, PR China
2 Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
3 Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
4 Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
5 Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
6 Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
7 Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
8 School of Public Health, Jilin University, Changchun, Jilin, China

A R T I C L E I N F O

Article history:
Received 8 August 2016
Accepted 17 November 2016

Key words:
Drug delivery
PLGA–PEG
Cisplatin prodrugs
Docetaxel
Combination therapy

A B S T R A C T

The combination chemotherapy regimen of cisplatin (CP) and docetaxel (DTX) is effective against a variety of cancers. However, combination therapies present unique challenges that can complicate clinical application, such as increases in toxicity and imprecise exposure of tumors to specific drug ratios that can produce treatment resistance. Drug co-encapsulation within a single nanoparticle (NP) formulation can overcome these challenges and further improve combinations’ therapeutic index. In this report, we employ a CP prodrug (CPP) strategy to formulate poly(lactic-co-glycolic acid)–poly(ethylene glycol) (PLGA–PEG) NPs carrying both CPP and DTX. The doubly loaded NPs display differences in drug release kinetics and in vitro cytotoxicity based on the structure of the chosen CPP. Furthermore, NPs containing both drugs showed a significant improvement in treatment efficacy versus the free drug combination in vivo.

© 2016 Elsevier Inc. All rights reserved.

Despite recent advances in molecularly targeted therapies and immunotherapies, cytotoxic chemotherapy regimens remain the most effective option in the management of cancers. Chemotherapeutics are commonly given in combination to overcome treatment resistance and to take advantage of synergistic effects that allow one drug to improve the therapeutic index of another.1–3 However, combination chemotherapy presents its own clinical challenges, such as leading to increases in toxicity. Moreover, due to the differences in drugs’ physico-chemical and pharmacokinetic properties, many tumor cells are not equally exposed to both chemotherapeutics in the desired ratio and dosage, leading to treatment resistance.2,4–7 The recent clinical success of a liposomal formulation containing cytarabine and daunorubicin suggests that co-delivery of chemotherapeutics via NP carriers can overcome treatment resistance, reduce systemic side effects, and further improve a combination’s therapeutic efficacy.8,9 Yet, to achieve the maximum therapeutic efficacy, many key challenges remain in the development of combination nanotherapeutics, such as delivering drugs that have very different chemical properties at a precise ratio and in a temporal manner.

Abbreviations: AST, aspartate aminotransferase; ALT, alanine aminotransferase; BUN, blood urea nitrogen; C4CP, butyrate modified Pt(IV); C8CP, octanoate modified Pt(IV); C10CP, decanoate modified Pt(IV); CP, cisplatin; CPP, cisplatin prodrug; Crea, creatine; DPBS, Dulbecco’s phosphate buffered saline; DTX, docetaxel; %EE, encapsulation efficiency; %FR, feeding ratio; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; NP, nanoparticle; PLGA–PEG, poly(lactic-co-glycolic acid)–poly(ethylene glycol).

This work was supported by National Institutes of Health/National Cancer Institute (R01CA178748-01) and National Institutes of Health/National Cancer Institute (US4CA198999, Carolina Center of Cancer Nanotechnology Excellence (CCNE)-Nano Approaches to Modulate Host Cell Response for Cancer Therapy), Jing Tian is supported by the National Science Foundation of Tianjin (Grant No. 15JCBB21100) and the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 20110531). Zachary Rodgers is supported by the Carolina Cancer Nanotechnology T32 Training Program (C-CNTP, NIH-T32CA196589). Andrew Wang was also supported by funding from the NIH/NCI (R21 CA182322).

The authors report no conflict of interests.

Corresponding author at: Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
E-mail address: zawang@med.unc.edu (A.Z. Wang).

1 These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.nano.2016.11.007
1549-9634/© 2016 Elsevier Inc. All rights reserved.
In this report, we aimed to address these challenges by developing an NP combination formulation of DTX and CP, a commonly utilized chemotherapy regimen effective against lung, gastric, and head and neck cancers.\(^{10–16}\) As proof-of-principle, we utilized poly(lactic acid-co-glycolic acid)–poly(ethylene glycol) (PLGA–PEG) NPs for our study, since this system is a proven and well-tolerated platform for drug delivery applications.\(^{17}\) However, hydrophilic CP loads poorly within the hydrophobic core of PLGA–PEG NPs, so we employed a proven cisplatin prodrug (CPP) strategy that increases the CP’s hydrophobic character by modifying an oxidized precursor platinum(IV) complex with fatty acid chains (Figures 1 and S1).\(^{18–20}\) The fatty acid modifications increase the complex’s hydrophobicity and promotes CPP co-encapsulation with DTX in similarly hydrophobic PLGA–PEG NPs. The fatty acid modified CPPs can form free CP after intracellular reduction generates the active Pt(II) square planar complex (Figure S1).

In this work, we examined several formulations of DTX and CPPs with varying hydrophobicities for differences in drug release kinetics and ideal dosing ratios when co-encapsulated within PLGA–PEG NPs. Furthermore, we evaluated the in vitro and in vivo efficacies of these NP formulations using lung cancer as a model disease.

Methods

Additional synthesis and characterization details are available in the supplementary information.

Cell culture

The lung cancer cell line, H460, was obtained from American Type Culture Collection (ATCC) supplied by the Tissue Culture Facility at the UNC Lineberger Comprehensive Cancer Center. The 344SQ cell line was a generous gift from Professor Chad Pecot’s lab. Cells were cultured in RPMI-1640 medium supplemented with fetal bovine serum (10% v/v).
and penicillin/streptomycin for the H460 (1% v/v) or puromycin for 344SQ (4 μg/mL).

Animal maintenance

Six to eight week old, female, athymic nude mice weighing 20-30 g were supplied by the University of North Carolina animal facility and maintained under pathogen-free conditions in the Center for Experimental Animals (an AAALAC accredited experimental animal facility). The animal use protocol was approved by the University of North Carolina Institutional Animal Care and Use committee and conformed to the Guide for the Care and Use of Laboratory Animals (NIH publication no. 86-23, revised 1985).

Preparation of PLGA–PEG NPs loaded with different drug ratios

PLGA–PEG was chosen as the NP platform due to its high clinical translation potential. DTX and CPPs were loaded into PLGA NPs via a nanoprecipitation method. Briefly, different feeding ratios (%FR, defined as wt% drug versus polymer) of drugs and PLGA–PEG (5 mg) were dissolved in acetonitrile (200 μL). The drug-polymer solution was then added drop-wise into deionized water (4 mL) under constant stirring. For singly loaded NPs, the DTX and CPP feeding ratios (%FR) were varied between 2 and 12 wt% (Figures 2 and S2; Table S1). For dually loaded NPs, the DTX %FR was held constant at 10 wt% due to its high encapsulation at this %FR, and the CPPs’ %FR was varied between 2 and 16 wt% (Figure 3; Tables S2 and S3). The NP suspension was allowed to stir uncovered for 3 h at room temperature to evaporate the acetonitrile. The resulting NPs were purified by ultra-centrifugation using an Amicon Ultra-4 filter (MWCO: 30 kDa) at 1000 g for 15 min (Millipore, Billerica, MA, USA). The PLGA–PEG NPs were washed with deionized water (3×) then suspended in PBS. Final drug loading was determined using high performance liquid chromatography (HPLC, see SI).

In vitro release of CPPs and DTX from PLGA–PEG NPs

In vitro drug-release profiles of loaded NPs were recorded under physiological sink conditions (Figure 4). NP solutions (500 μL) were split into Slide-A-Lyzer MINI dialysis microtubes (20 kDa MWCO, Pierce, Rockford, IL, USA) and dialyzed against a large excess of PBS (1 L) with gentle stirring at 37 °C. At the indicated times, 10 μL of solution was removed from the microtube and mixed with acetonitrile (60 μL) to

Figure 3. Drug loading (wt%) and encapsulation efficiency (% EE) of dually loaded NPs. PLGA–PEG NPs were formed with a constant 10%FR DTX and various %FR of (A, B) C₄CP, (C, D) C₆CP, or (E, F) C₁₀CP. The ratios shown above each bar in panels A, C, and E correspond to the DTX:CPP molar ratio encapsulated in the NPs.
dissolve the NPs. The residual DTX and CPP contents were determined using the HPLC method.

In vitro cytotoxicity of PLGA–PEG NPs

In a 96-well plate, H460 or 344SQ was plated (5000 cells/well) and allowed to recover overnight. Cells were then dosed with free small-molecule drugs or PLGA–PEG NPs with different drug molar ratios (dosing-1 nM to 20 μM). The cells and formulations were incubated in RPMI-1640 complete cell culture medium for 72 h. After incubation, in vitro toxicities of the NP drug formulations were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay (Promega) (**Figure 5; Table S4**). IC50 values were calculated by fitting the dose-dependent cell viabilities to a four-parameter logistic model using the MasterPlex 2010 software pack (MiraiBio Group, Hitachi Solutions America, Ltd.).

In vivo anticancer efficacy of PLGA–PEG NPs

A murine xenograft tumor model was formed by injecting a suspension of one million (H460) or five million (344SQ) cells (0.1 mL, 50% v/v Matrigel®) into the right flank. Tumors were allowed to grow to a volume 80-150 mm3 before initiating treatment. Mice were divided into six groups (5-6 mice per group) and treated via tail vein injection every 4 days with either (1) PBS (200 μL), (2) free CP (1.5 mg/kg) and DTX (3.8 mg/kg), (3) singly loaded mixtures of C8CP NPs (2.2 mg/kg) and DTX NPs (3.8 mg/kg), (4) singly loaded mixtures of C10CP NPs (2.1 mg/kg) and DTX NPs (3.8 mg/kg), (5) dually loaded C8CP (2.2 mg/kg) and DTX (3.8 mg/kg) NPs, or (6) dually loaded C10CP (2.1 mg/kg) and DTX (3.8 mg/kg) NPs. Tumor length and width were measured, and the tumor volume was calculated using: \(V = \frac{L \times W^2}{2} \), with \(W \) being smaller than \(L \) (**Figure 6**). Weight and the initial tumor volume were measured and recorded every 2 days. Mice were humanely sacrificed using CO2 inhalation method when tumor dimensions reached >2 cm in one direction.

Toxicity of PLGA–PEG NP formulations

The off-target in vivo toxicity of different arms was evaluated in one mouse randomly chosen from each arm 4 days after the last IV injection (Tables S5 and S6). Circulating blood (~ 1.5 mL) was collected via cardiac puncture. For hematological toxicity, 500 μL of whole-blood was stored in an EDTA-coated tube at 4 °C and analyzed as previously described for white and red blood cell counts. For hepatotoxicity and nephrotoxicity, whole-blood (1 mL) was transferred to a micro-centrifuge tube and centrifuged (7000 rpm, 5 min) to separate the red blood cells from the plasma. The isolated plasma was analyzed for serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels (units/L), blood urea nitrogen (BUN), and creatine (Crea) as previously described.

Statistical analysis

All experiments were performed at least three times (n = 3), and expressed as mean ± SD for in vitro or mean ± SEM for in vivo studies. Statistical differences were determined using two-tailed Student’s t-test. The significance level was taken as 95% (\(P < 0.05 \)).

Results

Loading characterization of singly and dually drug loaded PLGA–PEG NPs

We prepared three different CPPs modified with butyric (C4CP), octanoic (C8CP), or decanoic (C10CP) fatty acids as previously described (**Figure 1**). We determined the drug loading wt% and encapsulation efficiency (%EE) in the NP formulations over a range of tested %FR for all three CPPs and DTX (**Figures 2 and S2; Table S1**). For singly loaded NPs, the maximal amount of drug loading was found to be 1.15 ± 0.09 wt% (14.73 ± 0.83%EE), 1.93 ± 0.10 wt% (15.23 ± 1.04%EE), 3.39 ± 0.19 wt% (22.83 ± 0.14%EE), and 3.50 ± 0.09 wt% (28.65 ± 1.03%EE) for the C4CP (8%FR), C8CP (10%FR), C10CP (12%FR), and DTX (12%FR), respectively (Table S1). At all %FR greater than 2%, longer fatty acid chains provided greater CP loading values (C4CP < C8CP < C10CP).
For the dually loaded NPs, the DTX %FR was held constant at 10 wt%. In the presence of DTX, the CPP loading wt% remained consistent with singly loaded NPs. In these combination NPs, the cumulative loading wt% of drugs reached maximum levels of 4.49%, 5.13%, and 6.77% at %FRs of 16 wt% for C4CP, 8 wt% for C8CP and 16 wt% for C10CP, respectively (Figure 3, Table S2). Concurrently, the DTX:CPP molar ratios decreased as the CPPs' %FR increased. Once again, C10CP showed the greatest loading (3.48 ± 0.15 wt%, 37.86 ± 0.49%EE). Due to this higher loading, the C10CP shows equivalent NP accumulation versus DTX (1:1) even at a lower 8%FR, whereas more DTX still accumulates within NPs when the C8CP is loaded at a much higher 16%FR (1.3:1, DTX:C8CP). All three CPPs had minimal effect on DTX loading, since it remained relatively unchanged versus the singly loaded DTX NPs with maximum values of 3.21 ± 0.24 wt% (34.21 ± 0.41%EE) for C4CP, 3.26 ± 0.14 wt% (33.86 ± 0.22%EE) for C8CP, and 3.29 ± 0.12 wt% (37.86 ± 0.49%EE) for C10CP (Table S3).

Next, we examined any differences in dually loaded NP sizes at various CPP %FR (Figure S3). Throughout the C4CP and C8CP loadings with DTX, the particle size and polydispersity index (PDI) changed very little hovering around 60 nm (0.18-0.25 PDI). However, the C10CP particle size begins to increase from ~85 nm at the lower %FR (~4%) to ~125 nm at the higher feeding ratios (~8%), while the PDI stays low between 0.24-0.29. No significant differences in the particle morphology were found between CPPs as their shapes were all spherical (Figure S4).

In vitro drug release kinetics

We determined the release rates of DTX and CPPs from both the singly and dually loaded PLGA–PEG NPs under physiological sink conditions (Figure 4). All three CPPs displayed limited to no burst release. However, the CPPs exhibited large variations in their release rate for both the singly and dually loaded PLGA–PEG NPs related to their associated fatty acid chain length. For example, the C6CP released significantly faster than the C10CP in both singly and dually loaded NPs. In both cases, ~50% of the C6CP leached to the solvent in the first 4 h and reached complete release within 12 h. In contrast, less than 40% of the encapsulated C10CP was released in the first 24 h, and a residual 50-60% remained encapsulated after 48 h. Surprisingly, DTX release also showed a similar dependence on the associated CPP fatty acid length with more rapid...
DTX release when incorporated with C8CP versus C10CP. In general, DTX release from dually loaded NPs occurred faster than the CPPs and was affected to a lesser extent by the CPPs’ fatty acid chain length. Due to C2CP’s low drug loading and rapid release from the NPs we chose to use only the C8CP and C10CP for in vitro and in vivo studies.

In vitro cytotoxicity

The in vitro cytotoxicity of the combination NPs was evaluated in aggressive non-small cell (H460) and small cell lung cancer (344SQ) models to determine the combination NPs’ therapeutic efficacy (Table S4). Figure 5 compares the half-maximal inhibitory concentration (IC50) of free drugs, different molar ratios of co-dosed free drugs, singly loaded NPs, and the dually loaded NPs with both drugs at different molar ratios. The singly C4CP loaded NPs produced IC50 values of 188 ± 20 nM (H460) and 680 ± 72 nM (344 SQ), while the singly C8CP loaded NPs showed an even greater enhancement with IC50 values of 78 ± 15 nM (H460) and 150 ± 38 nM (344 SQ). Overall, the singly loaded CPP NPs produced IC50 enhancements ranging from eighteen to eighty-one fold versus free CP. In contrast, loading DTX into NPs showed no enhancement in the drug’s cytotoxicity as both its IC50 values slightly increased to 95 ± 17 nM (H460) and 220 ± 43 nM (344 SQ).

Co-encapsulation of CPPs and DTX into a single NP provided even lower IC50 values. The lowest cumulative drug IC50 values for dually loaded NPs occurred at loading ratios of 1.2:1 DTX:C6CP (26 ± 4 nM = H460, 88 ± 15 nM = 344 SQ) and 1.5:1 DTX:C8CP (18 ± 4 nM = H460, 70 ± 11 nM = 344 SQ). The 1.2:1 DTX:C6CP NPs showed a 2.4 (H460) and a 1.7 (344 SQ) fold reduction in IC50 versus both free drugs dosed at the same ratio. Likewise, the 1.5:1 DTX:C8CP formulation showed a cytotoxicity enhancement of 2.7 (H460) and 2.2 (344 SQ) versus a free drug formulation of the same feeding ratio. However, mixed, singly loaded NPs co-dosed at the same ratio (1.2:1 DTX NPs + C6CP NPs) and 1.5:1 DTX NPs (C6CP NPs) did not show a significant difference in cytotoxicity as their dually counter loaded parts. Due to the enhancement of cytotoxicity at these ratios, we chose to use the 1.2:1 DTX:C6CP and 1.5:1 DTX:C10CP dually loaded NP formulations for further in vivo studies.

In vivo efficacy of NPs in murine lung cancer xenografts

We investigated the in vivo treatment efficacy of the loaded NPs in a murine tumor xenograft model using two aggressive lung cancer cell lines (Figure 6). Mice receiving a control injection of PBS (1) showed rapid tumor growth with both tumor models enlarging nearly 20 fold within 12 days. In both tumor models, the combination NP (5) containing C6CP and DTX outperformed all other treatment arms by significantly delaying tumor progression the most. Furthermore, the DTX:C8CP dually loaded NP (6) outperformed the singly loaded NP combination treatment arms in the 344SQ model (3,4) but gave comparable results to both the free drug combination (2) and mixed C6CP NPs + DTX NP arms (3) in the H460 model. Animal survival reciprocated these results with mice receiving the combination NPs showing longer lifespans versus mice given the free drug combo or mixtures of singly loaded NPs (Figure S5).

Our previous work with PLGA–PEG NPs indicated that these particles tend to accumulate within the liver.24 Furthermore, cisplatin is a known nephrotoxin.25 Especially with the more potent drug formulations, these concerns could lead to undue toxicity in these target organs. Therefore, we investigated the hematological and organ specific toxicity of the new NP formulations. As with other chemotherapies, all mice receiving treatment showed a decrease in white blood cell counts indicating hematological toxicity (Table S5). However, all treatments encouragingly showed low hepato and nephrotoxicity as demonstrated by plasma ALT/AST and BUN/Crea levels, respectively (Table S6), indicating that dosing was well tolerated in these organs. Additionally, animal weight did not fluctuate significantly between treatment arms indicating limited deleterious effects (Figure S6).

Discussion

The combination of CP and DTX is a proven and effective therapy treatment strategy for a variety of cancer types that may benefit from an NP co-delivery strategy.5,10–16 Therefore, we sought to evaluate (1) the DTX/CPP combination NPs’ properties, and (2) the in vivo efficacy of these combination NPs in models of lung cancer.

In combination therapy, the proper dosage and ratio of drugs are required to reach the maximum therapeutic effect.6 We determined the CPPs and DTX co-loading capacities and ratios in PLGA–PEG NPs (Figures 2, 3, and S2; Tables S1–S3). For both singly and dually loaded NPs, the increased C10CP chain length more favorably partitions the CPP within the hydrophobic PLGA core versus its C8 and C6 counterparts at %FR greater than 2%. Obviously, this greater C10CP loading would allow for higher doses of CP, but this increased loading may not necessarily benefit the combination’s efficacy in vivo (vide infra). Since some combination therapies can affect the loading capacity of one or both drugs within an NP, we analyzed the CPPs’ effects on DTX loading and vice versa.7 As shown in Figure 3 and Tables S2 and S3, both CPPs and DTX did not regulate the loading of the other within the PLGA–PEG NP system. This makes engineering of DTX-CPP combination NPs with a precise drug loading ratio simple, since the %FR of either chemotherapy can be tuned without adversely affecting the other. Therefore, the PLGA–PEG NP provides an ideal system for precision loading of specific CPP and DTX drug ratios.

Previous work within our group has demonstrated that the rate of drug release from an NP carrier can significantly affect therapeutic outcomes making temporally controlled drug release a key consideration in NP design.22 Since the CPP’s chain length determined the maximum loading capacity, we reasoned that it may also lead to different rates of release from NPs. Unmistakably, a large difference in release rates was noted in both singly and dually loaded NPs (Figure 4). As the aliphatic chain length increases, the CPP release rate dropped. This result correlates nicely with the loading data and, once again, is likely due to C10CP’s greater procularity for the hydrophobic PLGA core versus shorter chained derivatives. More surprisingly, DTX release also changed with increasing hydrophobicity of the co-encapsulated CPP. We reason the increased hydrophobic environment resulting from the longer decanoic and ocatic acids may interact with the lipophilic DTX aiding in its retention. Regardless, this relationship between chain length and release rate may allow for temporally controlled DTX and CP release engineered to match the requisite pharmacokinetics for effective treatment of a particular disease. Furthermore, the more rapid DTX release before CP delivery correlates nicely with the order the combination is often given in the clinic (DTX → CP).10,11

Although previous studies indicate that they are not synergistic, CP and DTX combination therapy displays improved patient outcomes and an additive therapeutic effect against many forms of cancer, particularly for both non-small cell and small cell lung cancers.10,16,26 This increased efficacy stems mainly from their differing mechanisms of action within the cell that prevents treatment cross resistance. CP promotes apoptosis by forming irreversible DNA cross-links with guanine residues, whereas docetaxel stabilizes the microtubule network thereby blocking mitotic cell division. However, when given in their free form, the two drugs differing physicochemical properties could cause inaccurate and variable exposure of tumors to the necessary drug dosages and ratios leading to a reduction in treatment efficacy and increases in tumor resistance.27,28

Therefore, based on the clinical successes of other NP combination formulations to resolve these challenges, we hypothesized that co-encapsulation within NPs could even further improve the DTX and CPP combination’s therapeutic index.8,27,28 As expected, the combination of both drugs within the same NPs greatly improved the in vitro cytotoxicity versus the singly loaded NPs (Figure 5). This large improvement in cytotoxicity confirms that DTX and CPPs are at least additive when given together in NP form.10–16,21,29 Furthermore, the PLGA–PEG NPs themselves improved the combination’s in vitro toxicity.

activity as evidenced by a greater cytotoxicity than free DTX and CP dosed together at the same ratios. However, singly loaded DTX and CPP NPs given in combination at the same ratios produced similar cytotoxicities to the dually loaded NPs. This suggests no advantage to loading both drugs within the same NP at least in vitro. However, the primary advantages of co-encapsulation, such as accurate exposure of the target site to a precise drug ratio and modulation of each drug's release rate, would not fully manifest until evaluated in vivo where the advantages of co-encapsulation play a more prominent role.

Indeed, subsequent evaluation of the combination's efficacy in vivo showed an advantage to co-encapsulating CPPs and DTX (Figures 6 and S5). The dually loaded DTX+CP NPs outperformed all other treatment arms by blunting tumor growth the most in both lung cancer models. Even though the aggressive nature of these lung cancer xenograft models caused the tumor growth in all treatment arms to remain high, mice treated with the dually loaded NPs showed a prolonged survival versus animals receiving the free drug alone (Figure S5). This significant improvement likely stems from the aforementioned, accurate exposure of the tumor site to both drugs at a specific dose and ratio producing at least an additive therapeutic effect.\(^{10-16}\) In contrast, the free drug and singly loaded NPs may not equally expose and extravasate both drugs to the site of interest which reduces the therapeutic response. Furthermore, the improved stability and pharmacokinetic profile of NPs impart on their cargo also likely benefited the treatment's efficacy. Despite these increases in combination potency, the off-target liver and kidney toxicity remained low indicating that these treatments were well tolerated.

Interestingly, the choice of CPP used in the formulation also affected the combination's in vivo therapeutic index. Despite displaying a similar cytotoxicity to C6CP containing NPs in vitro, dually and singly loaded formulations of DTX and C6CP did not show a significant reduction in tumor growth for the H460 model versus free CP and DTX given together. This may be due to the associated release rates of C6CP and C6CP NP. The in vitro release data suggest that the C6CP NPs will retain most of its payload after 2 days leaving most of the CP at the tumor periphery.\(^{30}\) In contrast, the C6CP derivative fully released its payload within 2 days allowing for a fuller dosing of the tumor. The difference in the C6CP particle size may also play a role in the reduced efficacy. At the %FR used, the C6CP particles were nearly twice the diameter of the C6CP loaded particles. This may allow preferential extravasation of the C6CP NPs into the tumor bed or interior resulting in higher and more even CP and DTX delivery. Regardless, the marked improvement in in vivo efficacy for the dually loaded CP+DTX NPs clearly demonstrates that co-formation of CP and DTX is therapeutically superior to dosing both drugs either in their free drug form or as singly loaded NPs.

NP delivery vehicles can improve the therapeutic efficacy of drug combinations used in the treatment of cancer by accurately exposing the malignancy to a specific dose and drug ratio. This work demonstrates that the co-delivery of CPPs and DTX from PLGA–PEGNPs improves the combination's in vivo efficacy with at least an additive therapeutic effect.\(^{10-16}\) Furthermore, careful selection of the CPP structure ensured the best therapeutic outcome as demonstrated by the greater tumor volume reduction imparted by C8CP versus a longer chained C10CP derivative. This difference in therapeutic efficacy likely stems from variations in several prominent formulation properties, such as particle size and release kinetics, which are structurally dependent. This work's characterization of these effects will allow for the future engineering and clinical translation of new CPP and DTX NP combinations.

Appendix A: Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.nano.2016.11.007.

References